
A Survey on Testing and Reuse

Richard Torkar and Stefan Mankefors

Dept. of Informatics and Mathematics

University of Trollhättan/Uddevalla

P.O. Box 957, SE-46129 Trollhättan, Sweden

{richard.torkar, stefan.mankefors}@htu.se

Abstract
This survey tries to give an account of what type of

trends exist today in software reuse and testing. The focus

was to try to find out how developers use different tools
today and what tools are lacking, especially in the field of

reuse and testing. The population came from different

types of communities and organizations, to better give us
a generalized picture of today’s developers. We found

that a majority of the developers participating in the

survey did not test reused code and other testing
methodologies were not used to the extent that the

scientific community takes for granted. A more automated
approach to testing in combination with code coverage

analysis and statistical analysis was found to be needed.

1. Introduction

Software engineering today needs best practices and

tools to support developers to develop software that is as

fault free as possible. Many tools and methods exist today

but the question is if and how they are used and more

importantly in which circumstances they are (not) used

and why.

A few surveys in this field, e.g. The CHAOS report by

The Standish Group [17] which covers software failures

in the industry and recently (Aug 2002) the FLOSS

survey by Ghosh et al. [7] [8], which is a survey/study

about developers in the open source [11] and free

software [12] world, do exist. But they either focus on a

precise population, with its advantages and disadvantages

or cover the result of not testing ones software enough.

We believe that there is a need for a more integrated

test methodology together with the traditional

configuration management process in order to improve

the current situation. This paper covers a survey that took

place during late 2002, with the aim to answer some of

the questions our research team had with respect to testing

and reuse, two areas not usually covered very well in

surveys. We wanted to know to what extent reuse was

taking place and how frequently reused code was being

tested.

In our survey we asked software developers from

several companies, both national (Swedish and American)

and multinational, as well as open source developers from

several projects about what type of problems they faced

daily in their work. Not surprisingly the answers varied,

but many developers gave us the same basic feedback -

the systems designed today are complex and the tools for

creating these systems are getting more and more

complex as well. This indicated that software developers

could, among other things, benefit from more integrated

and automated testing in today’s software development

projects.

Yet, other questions in this survey, focused on reuse

and testing of re-usable components and code. We wanted

to know to what extent reuse was taking place today in

projects, how developers test this type of code and if they

use some sort of certification. Unfortunately, this [test of

reused code] was not the case among the developers in

our population.

All questions discussed in this paper can be found in

appendix 1.

1.1. Background

Many texts today exist concerning the area of testing.

Testing Object-Oriented Systems by Binder [2], The Art

of Software Testing by Myers [3] and How to Break

Software by Whittaker [4] all give a good insight. For

more information about testing - especially unit testing –

we recommend reading the IEEE Standard for Software

Unit Testing [18] and Using Unit Testing Late in a

Development Process [5].

Recently the International Institute of Infonomics at

University of Maastricht in the Netherlands [6] published

a report (FLOSS) that covered a survey about open source

and free software in Europe. This study is interesting in

many ways, especially so since some of the questions in

their survey touch the areas of software development and

software in general. Part IV [7] and V [8] in the FLOSS

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

study is partly being compared to the survey that we

carried out.

2. Methodology

The research upon which this paper is based was done

in five separate phases. The first phase was to gather

good candidate questions that we and other researches in

our team would like to have answered. During a meeting

several questions came up as good candidates. The second

phase consisted of selecting the questions that were of

most interest (unfortunately very few developers want to

answer 350 questions). The third phase consisted of

selecting which population we would use, and finally in

the two last phases we established how the questions

should be asked and answered and put together additional

questions that were not asked in the first questioning

round.

The research method we followed during this research

was a survey approach [10]. We wanted to conduct a

survey that would point out areas that software developers

found especially weak and in need of attention. We used

empirical inquiries from slightly different populations

(open source vs. business) to better examine reuse and

testing in today’s software projects.

One of the disadvantages of a survey is its time factor.

It takes time to prepare and it steals time from the

population answering the researcher’s questions. Gaining

access to different company employees, to answer our

questions, proved to be the greatest obstacle during this

research project.

Another threat to a survey can be the relationship

between the questioner and respondent, in our case we

estimated this to non-significant as explained later.

Since this research aimed to explain to what extent and

how reuse and testing was used today we chose different

organizations and type of developers. The main reason for

this was that we wanted to make sure the problems we

saw when analyzing the answers were in fact problems

that more or less all developers - regardless of company

or project - found in their daily work.

Since time was a critical factor it meant that a

qualitative approach, e.g. interview, was out of the

question. The geographic distribution of the population

also indicated that we should not use a qualitative

approach, even though telephones etc. can be used. A

quantitative approach was also considered to be the best

method, in our case, to more easily draw conclusions in a

statistical manner. One must, however, add that a

qualitative method probably would have given us a richer

set of data on which to base our conclusions upon.

By following the advice in [10] [19] concerning

pretests, a first testing round was carried out with four

developers participating. Thus we could be relatively

confident the questions were of the right type and

properly formulated.

The survey used self-administered questionnaires [10]

as a foundation, with the addition to a web-based

approach. This, in combination with our quantitative

approach, made us sure that we did not influence our

respondents in any way.

The total number of developers contributing to the

survey, during late 2002, was 91 (a further four

developers were asked but had no time to participate). Of

these 91 developers approximately 43% were from the

open source and free software development community

and 57% from three different companies; one

multinational (approx. 100,000 employees), and two

national; one Swedish (approx. 20 employees) and one

American with approximately 100 employees. All

respondents were either business contacts which have

been gathered over time or companies participating in

adjacent research projects.

When the survey finished, the answers were checked

and if any ambiguous answers were found, the survey

participant was contacted and additional questions were

asked in order to avoid misinterpretations.

It was stressed, at the introduction of the survey, that

the respondent should answer all questions with question

number 4 (appendix 1) in mind.

3. Presentation

The results are presented in three categories which are

discussed; one brief section with general questions and

two in-depth sections on reuse and testing. As mentioned

previously, all the questions relevant to this paper, are

found in appendix 1.

The general questions cover areas such as which

development environments or development kits are being

used, and the reuse category covers the area of component

and general code reuse with accompanying test

procedures. Finally, the test category covers questions

that more specifically involve different test

methodologies and best practices.

4. Results and Analysis

4.1. General questions

Of the survey participants 55% had an educational

level of M.Sc. or higher and only 15% had a high school

education or lower. The former number differs from the

FLOSS study where only 37% had an educational level of

M.Sc. or higher (question 1).

The above variance can be explained by two factors;

our survey having a larger degree of developers from the

business world as opposed to the FLOSS study Part IV

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

[7] which only focused on open source/free software

developers and the fact [7] that open source developers

are younger in general. This was confirmed in question

three (appendix 1) which showed us that the population

that we used had a higher average age (96% over the age

of 21). These numbers, could simply put it mean that we

have a more mature population in the sense of working

experience and educational level.

One of the general questions covered the usage of

large frameworks - when asked about different

development platforms, such as .NET [13], Enterprise

Java [14] and CORBA [15], the majority preferred Java

and in some cases even CORBA as opposed to .NET. The

main reason was that developers felt .NET being too

immature at the moment (mid-2002). Even so the usage

of .NET and CORBA was now equal with ~25% each.

More recent studies show .NET gaining even more

momentum [20]. There is a high probability that .NET

will be used even more in the future since it is backed by

some major interests in the industry (question 29).

The question "How often do you move deadlines in

projects?" (question 11) clearly showed one of the biggest

issues in today’s software projects (fig 1). The silver

bullet has clearly not been found yet.

Often

Rarely

Never

Figure 1. Moving deadlines

With 37% of the developers still moving deadlines

often and 59% moving them rarely there is still room for

improvement. According to [17] 9% of the projects in

larger software companies are on-time and on-budget, in

our case we have approximately 4% on-time.

Over 53% of the developers (question 17) claimed that

the majority of the projects they took part in encompassed

more than 10,000 lines of code. According to the FLOSS

study [8, p.17] the mean value is 346,403 bytes [of

software source code] in the average project. This

indicates that the different communities correlate rather

well.

As we have seen during the analysis of the general

questions not much differs, from other studies conducted

in the area of software engineering. This could indicate

that we have gathered a good sample population that

could answer our reuse and test questions, thus reflecting

the average developer, despite us having a smaller

population than the FLOSS study. We believe that the

validity of the larger FLOSS study with its focus on open

source and free software can, in many ways, be generally

applicable for the business world.

4.2. Reuse

As mentioned previously, the amount of reuse in

combination with testing was one of two areas we wanted

to focus on since we have not found any surveys covering

this area. Never the less, some of the surveys that at least

touch this subject are [24] and [25], but they either cover,

success and failure examples of reuse in small and

medium size enterprises or a particular feature [software

repositories] of reuse. Another paper [26] cover large

enterprises which are considered to be successful in the

area of software reuse.

The developers were asked several questions with

regard to reuse in software engineering. Both component-

based reuse and clean code reuse (i.e. cut and past). Here

one could clearly see a distinction between open source

developers and developers from the business world.

Almost 53% of the developers said that they usually had

some element of reuse in their projects (question 31). But

sadly only five of these developers were from the

business sector. One of the main reasons for this, we

found out when asking the respondents, was that

consultants usually do not own the code - the customer

who pays for the work owns the code. This, naturally,

makes it harder to reuse code later on.

Only 36% of the developers actively search for code to

be reused (question 15). The low number is not strange

when one considers that developers creating components

almost never certify them in any way (either in-house or

commercial, e.g. [21]). Only 6% use some sort of

certification on a regular basis (question 25).

When it comes to buying components the developers

were asked if size or complexity matters the most

(questions 32-33), 26% of the developers were of the

opinion that size did not matter at all. The complexity

aspect of reuse is what makes some developers see a great

advantage. Unfortunately, most developers found that

components performing complex tasks were hard to find.

The reason for this, many developers claimed, is probably

that these types of components usually contain business

logic made specifically for one company.

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

4.3. Testing

On the question if the developers tested their software,

52% answered yes, and another 34% answered that they

sometimes test their code (question 19). Object-oriented

testing/Unit testing is without a doubt the most used

testing methodology with 78 out of 91 developers

(question 20). A previously published study [5] give a

good indication on the benefits of said testing. Open

source developers and developers from the business world

test their code equally according to our survey.

When asked about a unit testing example (question

21), which basically consisted of a simple function, the

most common approach (>40% of the developers) tested

extreme values only, i.e. boundary value analysis [13,

p.1758]. A few developers (~20%) tested random values

and almost a third of the developers did not test such a

function at all (>30%). The concept of boundary testing

seems to be known, both in the industry and in the open

source world amongst developers, in general. Even

though boundary value analysis only catch some of the

faults, it is still encouraging to see that at least this basic

test technique is being used, to some extent.

Most developers in this survey used some sort of a

testing framework which they themselves did not develop

(questions 26-27). A majority of the developers testing

their code used some of the unit testing frameworks that

exist today, most notably some variant of JUnit [16].

As we showed previously only 4% of the projects the

developers took part in were on-time. Sadly these

respondents usually did not test their software in any way

but instead waited for customer feedback as a form of

quality assurance. On the other hand 60% of the

developers claimed that verification and validation

(V&V) was the first thing that was neglected (question

36). This was mostly common in the business world,

unmistakably so since open source developers usually do

not have such strict time frames. Could this lead to higher

quality in open source software? Some indications exists

that this might be the case [28] [29].

Almost 53% of our respondents stated that they had

some element of reuse in their code but only 34% of these

53% claimed that they tested the reused code in any way

(fig 2) (questions 24, 31).

Yes

No

Figure 2. Dev. with elements of reuse in their
projects that also test the reused code

The reason for this was primarily that they found

writing test cases afterwards too tedious. One developer

said that while the component was not certified in any

way the developers creating it should have tested it. The

same developer believed that testing software was more

or less unnecessary since customer feedback would give

him that advantage anyway.

One thing was consistent with all developers. They all

wanted better tools for writing tests cases, especially

when the code had been written by someone else. Many

of them (~75%) also felt that even though they had

written test cases they still could not be certain that the

tests were good enough (question 37). They, simply put,

wanted some statistics on how well their tests were

written and how well they tested a given function, class or

code snippet, i.e. code coverage [22].

Developers preferring Java had the highest element of

testing in their work - this could be explained by

developers having the knowledge of JUnit [16] which is

considered to be a mature unit testing framework

(questions 26-27, 29). The only discrepancy to this was

developers in the open source world, they used several

different frameworks [16] [23].

Most developers thought that unit testing was tedious

and many times not worth the time spent (What is the

main disadvantage with the test methodology you use?

question 38). As an alternative test methodology, they

focused primarily on testing the software under simulated

circumstances as soon as possible i.e. a variation of

acceptance testing [1, pp.61-62]. We find this to be an

alarming sign since unit testing is considered, by many, as

being the first vital step in the testing process. By

neglecting unit tests many, much harder to find, faults

will emerge later on.

If we make a comparison between open source and

business, we can see that open source developers in

general have a better knowledge of which type of

frameworks exists for testing (question 27) - they could,

in general, mention several more frameworks they used to

cover their needs.

Furthermore, if we combine questions 4, 7-8, 10-11

and 34 it implicates, not surprisingly, that developers in

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

the industry in most cases have less freedom, higher

workload and lack of time. The lack of testing in

combination with reuse could be explained by developers

claiming that V&V is the first thing being diminished in a

project (question 36).

5. Discussion

Before we continue, it might be worth mentioning that,

our survey had approximately ±5% of pure statistical

errors, while the FLOSS study with its large number of

participants, probably ended up with a ±1% error margin.

These numbers are to be considered worst case scenarios

but, never the less, must be taken into consideration when

comparing results throughout this paper. Even so, we find

our numbers being more representative for our purposes

than the FLOSS study. We needed a broad population

with different backgrounds (business and open source),

while the FLOSS study concentrated on open source/free

software developers only – with no focus on reuse and

testing on the whole.

The results from this survey are in line with other

surveys conducted before, when comparing general

questions. Some discrepancy exist which can largely be

explained by other surveys and studies having a larger

contribution from the development community in terms of

participation, as well as a different mix of business and

open source.

Concerning testing we do not have much to compare

with, this is one of the few surveys as of now that have

such a strong focus on testing and reuse. Some papers

cover some aspect of reuse, as already mentioned, while

other [27] cover a combination [quality and productivity].

Simple tools for developing software are still widely

used. This is explained by the respondents as being

simpler to use while at the same time letting the

developers keep the control over their code (question 18).

This might also indicate why developers find it tedious to

learn new test methodologies and tools – Keep It Simple

Stupid (KISS) - is still very much viable in today’s

projects. This gives us a hint that whatever tools, we

introduce to developers, must be kept simple and easy to

learn. The best tool would be a tool that the developer

does not even notice.

With respect to different development platforms that

are in use today - Enterprise Java is holding a strong

position. This could very well change soon since already

23% of the developers find (in late 2002) .NET being

their primary choice. We believe that this number will

rise even more and that this will be one of the two target

groups [of developers] where simple and automatic tools

could come to the rescue. The second group, of course,

being the Java developers.

Developers seem to reuse code to a fairly high extent,

but unfortunately they do not test the reused code much.

We have already showed [5] the need for testing software,

especially software that is reused a lot, in an earlier study.

Here we see developers asking for help to test code

that is about to be reused. In addition to that, many

developers would like to see a tool that could give them

an indication on how well their test cases are written (e.g.

test coverage) - again KISS.

Developers today need to have a better knowledge on

the importance of unit testing. If the foundation which

certain software lies upon is not stable, by not using unit

tests, then it risks deteriorating everything. Since the

workload is high and deadlines creep even closer,

developers must be presented with more automated tools

for test case creation and test execution. Also tools that

give them an indication on how well the tests cover their

software are wanted.

What we found somewhat surprising is the low level of

component/library certification taking place. We believed

that certification of software had evolved further - beyond

academic researchers [30] [31]. This was not true except

for a few cases.

In short, to summarize it, some of the key findings in

our survey were;

a) developers reuse code but do not test it to the

extent we expected,

b) simple to use tools are lacking when it comes to

test creation and test analysis,

c) knowledge on the importance of testing in

general and unit testing in particular seem low,

d) certification seem to be more or less non-

existent.

Since 96% percent of the developers are exceeding

their deadlines, at least occasionally, one can claim that

there is still much room for improvement.

6. Acknowledgements

Prof. Claes Wohlin, Blekinge Institute of Technology,

for finding flaws and at the same time seeing the bigger

picture. Dr. Christina Cliffordson, University of

Trollhättan/Uddevalla, for helping out in forming this

survey. Her experience in survey methods gave us some

indication on what we should not do. Dr. Steven Kirk,

University of Trollhättan/Uddevalla, for proofreading this

paper over and over again. The European Union regional

development fund for funding part of this project.

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

References

[1] I. Sommerville, Software Engineering, Addison-Wesley,

2001.

[2] R. V. Binder , Testing Object-Oriented Systems, Addison-

Wesley, 1999.

[3] G. J. Myers, The Art of Software Testing, John Wiley &

Sons, 1979.

[4] J. A. Whittaker, How to Break Software, Addison-Wesley,

2002.

[5] R. Torkar, C. Hansson, A. Johansson and S. Mankefors,

“Using Unit Testing Late in a Development Process”,

Second Conference on Software Engineering Research

and Practice in Sweden, 2002.

[6] FLOSS, http://www.infonomics.nl/FLOSS/,

2003-01-29.

[7] A. R. Ghosh et.al., ”Free/Libre and Open Source

Software: Survey and Study. FLOSS Deliverable D18:

FINAL REPORT. Part 4: Survey of Developers”,

University of Maastricht, The Netherlands, 2002.

[8] A. R. Ghosh et.al., ”Free/Libre and Open Source

Software: Survey and Study. FLOSS Deliverable D18:

FINAL REPORT. Part 5: Software Source Code Survey”,

University of Maastricht, The Netherlands, 2002.

[9] J. J. Marciniak, Encyclopedia of Software Engineering,

John Wiley & Sons, 2001.

[10] E. R. Babbie, Survey Research Methods, Wadsworth Pub

Co., 1990.

[11] Open Source Initiative,

http://www.opensource.org/,

2003-01-29.

[12] The GNU project,

http://www.gnu.org,

2003-01-29.

[13] T. L. Thai and H. Q. Lam, .NET Framework Essentials

(2nd Edition), O’Reilly, 2002.

[14] D. Flanagan, Java Enterprise in a Nutshell (2nd Edition),

O’Reilly, 2002.

[15] F. Bolton, Pure CORBA, Sams, 2001.

[16] JUnit, http://www.junit.org, 2002-08-27.

[17] The Standish Group, “The CHAOS Report (1994)”,

http://www.standishgroup.com,

2003-01-29.

[18] IEEE, “IEEE Standard for Software Unit Testing (ANSI)”,

1997.

[19] R. K. Yin, Case Study Research: Design and Method,

Sage, 1994.

[20] Evans Data Corp., “North American Developer Survey

Volume 2, 2002”, http://www.evansdata.com, 2003-01-29.

[21] Flashline, “Software Component Certification Program”,

http://www.flashline.com, 2003-02-07.

[22] T. W. Williams, M. R. Mercer, J.P. Mucha and R. Kapur,

“Code coverage, what does it mean in terms of quality?”,

Proceedings of the 2001 Annual Reliability and

Maintainability Symposium, Philadelphia, PA, January

22-25, 2001, pp 420-424.

[23] NUnit, http://www.nunit.org, 2003-02-08.

[24] M. Morisio, M. Ezran and C. Tully, “Success and Failure

Factors in Software Reuse”, IEEE Transactions on

Software Engineering, Vol. 28, Issue 4, pp 340-357, Apr

2002.

[25] J. Guo and Luqi, “A Survey of Software Reuse

Repositories”, (ECBS 2000) Proceedings, Seventh IEEE

International Conference and Workshop on the

Engineering of Computer Based Systems, pp 92-100,

2000.

[26] D. C. Rine and N. Nada, “An Empirical Study of a

Software Reuse Reference Model”, Information and

Software Technology, Volume 42, Issue 1, pp 47-65, 1

January 2000.

[27] W. B. Frakes and G. Succi, “An Industrial Study of Reuse,

Quality, and Productivity”, Journal of Systems and

Software, Volume 57, Issue 2, pp 99-106, 15 June 2001.

[28] Resoning Inc, “How Open Source and Commercial

Software Compare: A Quantitative Analysis of TCP/IP

Implementations in Commercial Software and in the

Linux Kernel”,

http://www.reasoning.com/downloads/opensource.html,

2003-02-27.

[29] J. Forrester and B. Miller, “An Empirical Study of the

Robustness of Windows NT Applications Using Random

Testing”, Proceedings of the 4th USENIX Windows

Systems Symposium, Seattle, WA, USA, August 2000,

pp. 59-68.

[30] J. Voas and J. Payne, “Dependability Certification of

Software Components”, Journal of Systems and Software,

No. 52, 2000, pp 165-172.

[31] M. Shaw, “Truth vs. Knowledge: The Difference Between

What a Component Does and What We Know It Does”,

Proceedings of the 8th International Workshop on

Software Specification and Design, March 1996.

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

Appendix 1

All numbers in this appendix are, if not otherwise stated, in percentage.

Q1. What is your educational level?

High School College degree / B.Sc. M.Sc. or higher

15 40 55

Q2. Are you male or female?

Male Female

98 2

Q3. How old are

you?

<=20 21-29 >=30

4 51 45

Q4. Do you consider yourself being a; business/industry

developer or open source developer?

Open Source Bus./ind. Dev.

43 57

Q5. How many developers do you usually have in one team?

Less than 10 Between 10 and 20 More than 20

77 14 9

Q6. Is there usually interaction between your team/project and other

team(s)/project(s)?

Yes Rarely No

26 2 72

Q7. Do you find yourself having much freedom in your work as a developer?

A lot of freedom Some freedom Quite limited freedom

75* 22 3

* Of the developers experiencing “A lot of freedom” 80% where from the open source world.

Q8. Are you involved in setting requirements or specifications for software?

Yes Rarely No

94* 2 4

* Open source developers seem to be somewhat more involved in this case - although this falls within the ±5%

error margin.

Q9. How do you know if you've fulfilled the requirements, specifications or goals for a particular software?

(Only a few answers presented)

Customer satisfaction

Time will tell

I just know

Through testing of software and user feed-back

Through customers quality assurance testing

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

Q10. Do you have flexible time frames when working in projects?

Yes Rarely No

67 22 11

* Not surprisingly, the vast majority that answered yes in this question, were from the open source world (85%).

Q11. How often do you move deadlines in projects?

Often Rarely Never

37 59 4

* 34 developers answered yes in this question, almost all of them were from the industry.

Q12. During a project that is proceeding according to plan, how much of your total time

spent on the project do you approximately spend on: *

Lot of

time

Some

time No time

Analysis 33 61 6

Design 45 53 2

Implementation 70 30 0

V&V / testing 35 63 2

*This was unfortunately a question that became very hard to analyze

Q13. Which part do you find most troublesome?

Analysis Design Implementation V and V / testing

25 16 35 24

Q14. Have the projects you've been taking part in stored and documented

components/libraries in a systematic way for later reuse in other projects?

Yes, often Yes, but seldom No

47 39 14

Q15. How often do you search for re-usable code (i.e. libraries, components,

classes) instead of doing it yourself?

Always Rarely Never

36 62 2

Q16. How many classes does your average project encompass?

Less than 100 between 500 - 10,000 More than 10,000 Could not answer

35 41 21 3

Q17. How many lines of code does your average project encompass?

Less than 500 Between 500 and 10,000 More than 10,000

4 43 53

Q18. What sort of development environment do you usually use?

Console editor and compiler

Fancier GUI editor +

compiler

Visual Studio

et.al.

35 31 34

Q19. How often do you test your software?

Often Rarely Never

52 34 14

Q20. What type of structured approach do you use when testing software?

Black-box testing Structural testing (white-box) Object-oriented testing/Unit testing Other

12 10 72 6

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

Q21. The function long foo(int i) takes an int and converts it to a long, which is then returned.

Which approach would you like use to test the above method's ability to convert every possible int to long?

The absolute majority (~75%), that first and foremost tested their software, only tested boundary values. In some

cases this was complemented by random values.

Q22. Do you test a single component or class in any way?

Yes Rarely No

67 22 11

Q23. Do you test an assembly of components in any way?

Yes Rarely No

67 16 17

Q24. Do you test a component in any way before you reuse it?

Yes Rarely No

43 41 16

Q25. Do you use some sort of certification when you have developed

a component within your project/company?

Yes Rarely No

6 13 81

Q26. Do you use any specific test framework?

Yes Rarely No

35 18 47

Q27. If the answer was yes/rarely in the previous question, please stipulate which framework you use.

Most developers used a variant of Unit testing (usually derived from JUnit).

i.e. NUnit, CppUnit, COMUnit, pyUnit, cUnit, JUnit

Q28. Does - in your opinion - the choice of framework (.NET, EJB, CORBA) affect the

possibility for the software to be easily upgradeable in the long term?

Yes Rarely No

53 16 31

Q29. Which framework do you use (e.g. Java, CORBA, .NET* et.al.)? **

23%

42%

21%

14%

.NET

Java

CORBA

Other

* The rather large amount of .NET developers in the open source world was not expected initially. After contacting

several of the respondents it became clear that they participated in several open source .NET implementations.

** Open source developers were spread over all four categories – fairly equally. Business developers on the other

hand focused mostly on Java and .NET.

Q30. How often do you rather spend time writing glue code and reuse a

class/component, than rewriting it?

Often Rarely Never

46 48 6

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

Q31. How often do you reuse a piece of code/class/component from another

project?

Often Rarely Never

53 47 0

Q32. Does the size of (a) component(s) seriously affect decisions on whether you develop it

yourself or buy it?

Often Rarely Never

43 31 26

Q33. Does the complexity of (a) component(s) seriously affect decisions on whether you

develop it yourself?

Often Rarely Never

59 24 17

Q34. Do open source or commercial projects usually enforce a certain technology? (.NET,

EJB, CORBA)

Yes Rarely No

55* 22 23

* Of the 55% answering “Yes” almost 80% came from the industry)

Q35. What do you think should be improved in today's component technologies?

Do they miss a feature that a developer might need? (i.e. EJB, .NET, CORBA)

(Only a few answers presented)

- The “[...] ability to concentrate on the business domain. still have to write too much plumbing”

- (1) Easy finding of existing components for reuse. (2) Certification of components. (3) Compatibility between

different component technologies.

- Those guys need to agree on ONE standard so you do not need to waste time learning new stuff all the time

- Today's component technologies lack maturity. half of them will be gone in 10 years.

- They are way too bloated.

- I stick with the smaller more specialized components written as libraries or DLL's. They do what they shall, are

easier to modify and adapt to special needs.

- Too big, too general, one-fits-it-all will more often fail than help

- Performance/Portability/Speed

- Make the technologies more portable between platforms and app. server vendors.

Q36. In case of time shortage during a project, which part do you find is being reduced firstly?

Analysis 16%

Design 20%

Implementation 4%

V&V 60%

Q37. When/if you have written test cases for your software, do you feel confident that you have written

enough or the right tests?

Yes Rarely No

17 10 73

Q38. What do you feel is the main disadvantage with test frameworks being in use today?

(Only a few answers presented)

- Hard to get real numbers on how well my tests are written

- Most unit test case generators only do stubs. That is bad...

- I shouldn’t need to write even one test case for my software. This should be automated.

- They are not mature enough yet. I don’t want to learn a test tool that doesn’t give me much help!

Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 09:53 from IEEE Xplore. Restrictions apply.

