
A Systematic Mapping Study on Non-Functional Search-Based Software Testing

Wasif Afzal, Richard Torkar and Robert Feldt
Blekinge Institute of Technology,

S-372 25 Ronneby, Sweden
{waf,rto,rfd}@bth.se

Abstract

Automated software test generation has been applied
across the spectrum of test case design methods; this in-
cludes white-box (structural), black-box (functional), grey-
box (combination of structural and functional) and non-
functional testing. In this paper, we undertake a systematic
mapping study to present a broad review of primary studies
on the application of search-based optimization techniques
to non-functional testing. The motivation is to identify the
evidence available on the topic and to identify gaps in the
application of search-based optimization techniques to dif-
ferent types of non-functional testing. The study is based
on a comprehensive set of 35 papers obtained after using
a multi-stage selection criteria and are published in work-
shops, conferences and journals in the time span 1996–
2007. We conclude that the search-based software testing
community needs to do more and broader studies on non-
functional search-based software testing (NFSBST) and the
results from our systematic map can help direct such efforts.

1. Introduction

Search-based software testing (SBST) research has at-
tracted much attention in recent years as part of a general
interest in search-based software engineering approaches
[27, 28]. The growing interest in SBST can be attributed to
the fact that there is a need for automatic generation of test
data, since it is well-known that exhaustive testing is infea-
sible and the fact that software test data generation is con-
sidered NP-hard [36]. All approaches to SBST are based on
satisfaction of a certain test adequacy criterion represented
by a fitness function [27, 36]. McMinn [36] has written
a survey on search-based software test generation, which
shows the application of search-based techniques for white-
box testing, black-box testing, grey-box testing and for the
verification of non-functional properties. The survey shows
that for non-functional testing, the search-based techniques

are applied for execution time testing of real-time systems.
Now, it is both important and interesting to know the extent
of application of search-based optimization techniques for
testing other non-functional properties. It is with this moti-
vation that the current study has emerged from our work to
gather, map and summarize primary studies about NFSBST
in an accurate, fair and partial manner [34]. It is essen-
tially a systematic mapping study to identify available evi-
dence on NFSBST. A systematic map provides an overview
of a research area to assess the quantity of evidence existing
on a topic of interest [34] (see e.g. Bailey’s et al. mapping
study [4]).

The remainder of this paper is organized as follows. Sec-
tion 2 describes our research protocol, including the search
strategy and study selection. In Section 3, we describe the
results. Sections 4 and 5 comprises of analysis and discus-
sion of results, while the paper is concluded in Section 6.

2. Identification of research

We defined the following research question inline with
the overall purpose of the study:

RQ: In which non-functional testing areas have search-
based techniques been applied and what are the different
metaheuristics used ?

A clear definition of population, intervention, outcomes
and experimental design helps identifying relevant primary
studies [34]. Our population is limited to the application
area of software testing. Our intervention includes appli-
cation of metaheuristic search techniques to test different
types of non-functional properties. The outcome of our
interest represents different types of non-functional testing
that use metaheuristic search techniques.

2.1. Generating a search strategy

We used the following search terms to find relevant pa-
pers:



• Population: testing, software testing, testing software,
test data generation, automated testing, automatic test-
ing.

• Intervention: evolutionary, heuristic, search-based,
metaheuristic, optimization, hill-climbing, simulated
annealing, tabu search, genetic algorithms, genetic
programming.

• Outcomes: non-functional, safety, robustness, stress,
security, usability, integrity, efficiency, reliability,
maintainability, testability, flexibility, reusability,
portability, interoperability, performance, availability,
scalability

We used Boolean OR to join alternate words and syn-
onyms and Boolean AND to join major terms for popula-
tion, intervention and outcome. The non-functional proper-
ties listed under outcomes are guided by five existing tax-
onomies, namely McCall software quality model, Boehm
software quality model [19], ISO/IEC 9126-1 [30], IEEE
Standard 830-1998 [29] and Donald G. Firesmith’s taxon-
omy [20]. The non-functional properties obtained from ex-
isting taxonomies are restricted to high-level external at-
tributes only for the sole purpose of guiding the search strat-
egy. The different non-functional testing areas that are dis-
cussed later in the paper cannot be mapped as it is with these
listed non-functional properties. Therefore, while quality
of service includes attributes such as availability and relia-
bility, we have retained the term quality of service in later
part of the paper (Subsection 4.2) to remain consistent with
the terms used by the original authors in their respective
papers. Similarly, one can argue execution time (Subsec-
tion 4.1) and buffer overflow (Subsection 4.3) to fit under
performance and security respectively, but we remain con-
sistent with using the common terms of execution time and
buffer overflow according to the authors’ usage.

The search was applied on digital libraries accessed
via IEEE Xplore, ACM Digital Library, Compendex and
ISI Web of Science. In addition, manual search was
performed on the following journals (J) and conference
proceedings (C): Real Time Systems Symposium (C),
Real Time Systems (J), Genetic and Evolutionary Com-
putation Conference—Search-based Software Engineering
Track (C),Software Testing, Verification and Reliability (J)
and Software Quality Journal (J). To have confidence in
the completeness of search, the results of the search were
matched against a core set of studies to compare that the
search found the entire core set.

To have a more representative set of studies, we also
scanned the reference lists of primary studies and contacted
researchers who authored most of the papers in a particu-
lar non-functional area. Only studies within the time span
1996–2007 were included. It is important to note that hav-

ing restricted the search within these years excluded stud-
ies by Schultz et al. [42, 43] (authored in year 1992 and
1995 respectively) which applies evolutionary algorithms
for robustness testing of autonomous vehicle controllers.
We therefore, do not include these two studies in the analy-
sis.

2.2. Study selection

Optimization techniques have been applied across dif-
ferent engineering and scientific disciplines. Moreover
within software testing, search techniques have been ap-
plied from planning to execution. Therefore, it is impera-
tive that we define comprehensive inclusion/exclusion cri-
teria. We excluded studies that do not relate to software
engineering/development, do not relate to software testing,
do not report application of optimization techniques, do
not report application of metaheuristics (metaheuristics in-
clude hill climbing, simulated annealing, tabu search, ant
colony methods, swarm intelligence and evolutionary meth-
ods [10]), describe search-based testing approaches which
are inherently structural (white-box), functional (black-box)
or grey-box (combination of structural and functional) (this
exclusion criterion is relaxed to include those studies where
a structural test criterion is used to test non-functional prop-
erties, e.g. [5]), are not related to the testing of the end prod-
uct e.g. [55], are related to test planning e.g. [16], make use
of model checking and formal methods e.g. [3, 17], report
performance of a particular metaheuristic instead of its ap-
plication to software testing e.g. [35], report on test case
prioritization e.g. [50], are used for prediction and estima-
tion of software properties e.g. [6, 44].

In the beginning, a single researcher excluded 37 refer-
ences out of a total of 404, primarily based on reading the
title and abstract. The remaining 367 references were sub-
jected to detailed exclusion criteria, which involved three
researchers. This resulted in 60 remaining papers, which
were further filtered out by reading full-text. A final figure
of 24 primary studies was reached after excluding similar
studies that were published in different venues. The 24 pri-
mary studies were complemented with 11 more papers by
scanning the reference lists of the primary studies and con-
tacting relevant authors.

3. Results

The results indicate that within non-functional testing,
the application of metaheuristic search techniques can be
classified under execution time, quality of service (QoS),
buffer overflow, usability, and safety.

Figure 1 shows the year-wise distribution of primary
studies within each non-functional property as well as the
frequency of application of different metaheuristics. The



Non-functional
property

Safety

Usability

Buffer 
overflow

Quality of 
service

Execution
time

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 GASA GE LGP HC,SA,
TS

GA,
PSO

TS,SA,
GA

SA,
HC

TS AC,
GA

GA,
SA

Year Range of metaheuristics

2,7,
21-23,37,
39-41,47,

51-54

11,
12

9,24,
25

45

5,
26

8381446

31,
33 1832

48

13,
15

14949

13-15,
38

51
37,39,
41,48,

52
40 23,

53
21

46

22

1,5

18

45

7

12

9,24,
32

26

47

31

11

25,
33

8

2,
54

GA = genetic algorithm
SA = simulated annealing
GE = grammatical evolution
LGP = linear genetic programming
PSO = particle swarm optimization
TS = tabu search
HC = hill climbing
AC = ant colony

Figure 1. Distribution of NFSBST research over range of applied metaheuristics and time period.

bubble at the intersection of axes contains the reference
number of papers. It is evident from the figure that ge-
netic algorithms are the most widely used metaheuristic
with applications in 21 papers across different types of non-
functional testing. In the left quadrant of Figure 1, each
bubble represents the reference numbers of primary stud-
ies within each non-functional area in respective years from
1996–2007.

4. Analysis

The focus of this section is to present a broad overview
of research within NFSBST, discussion of range of meta-
heuristic techniques used and satisfaction of problem ob-
jectives.

4.1. Execution time

The application of metaheuristic search techniques to
test real-time requirements in embedded computer systems
involves finding the best and worst case execution times
(BCET, WCET) to determine if timing constraints are ful-
filled. Our systematic map indicates that the papers mea-
suring BCET and WCET are by far the largest contribu-
tor in NFSBST research. The study by Briand et al. [7]
has differentiated the temporal testing research into two di-
rections. The one direction focuses on violation of timing
constraints due to input values and has attracted the bulk
of research. The other direction, which is the one taken
by Briand et al. [7], analyses task architectures and con-
sider seeding times of events triggering tasks and tasks’ syn-
chronization. This study does not considers tasks in isola-

tion. Both approaches to temporal verification, however, are
complementary. Another dimension of research into tempo-
ral testing using metaheuristic search techniques focuses on
properties of test objects inhibiting evolutionary testability
and formulation of complexity measures for predicting evo-
lutionary testability [21, 22].

Genetic algorithms have been used as the metaheuristic
in majority of studies (14 out of 15). The fitness functions
vary according to research dimensions described above,
which includes measurement of execution time of the test
object, coverage of code annotations inserted along shortest
and longest algorithmic execution paths and exponential fit-
ness function based on the difference between execution’s
deadline and execution’s actual completion.

4.2. Quality of Service (QoS)

Under the umbrella of service-oriented software engi-
neering, genetic algorithms have been used for quality of
service aware composition and violation of service level
agreements (SLAs) between the integrator and the end user.
The range of fitness functions used are based on the maxi-
mization of desired QoS attributes with a static or dynamic
penalty function and a combination of distance-based fit-
ness with a fitness guiding the coverage of target statements.

4.3. Buffer overflow

Buffer overflow can cause unauthorized exploits, thus
compromising software security. Grammatical evolution,
linear genetic programming, genetic algorithm and parti-
cle swarm optimization have been used for detecting buffer



overflows. The objective is to detect buffer overflows, vul-
nerable statements, exceptions and evolving plausible at-
tacks. Most of the fitness functions are based on the ability
of an attack to fulfill the conditions necessary for a success-
ful exploit. The work of Kayacik et al. [31, 32, 33] is no-
table as they describe an approach to a framework for attack
generation based on the evolution of system call sequences.

4.4. Usability

Search-based usability testing of software has been ap-
plied in the form of interaction testing where the goal is to
test the t-way interactions taking place through the user in-
terface. The research into interaction testing has focused
on generating covering arrays which is a combinatorial ob-
ject representing interactions. These studies show the use
of hill-climbing, simulated annealing, tabu search, genetic
algorithms and ant colony algorithms as the applied meta-
heuristics. The objective is either rapid coverage of interac-
tions or obtaining smaller test suites. The fitness function
used for constructing covering array is the number of un-
covered t-subsets.

4.5. Safety

Search-based safety testing is an area where the research
has targeted real world problems such as safety of car con-
trol systems [5] and steam boilers [1]. The research into
search-based safety testing can be differentiated into two
themes. One is the case where generation of separate inputs
is discussed to test the safety property while the other case
discusses generation of sequence of inputs. The objective is
the violation of a safety property. The used metaheuristics
include genetic algorithms and simulated annealing. The
fitness functions used measures the cost related to the vio-
lation of the safety property.

5. Discussion

We presented the results of the initial scoping study (sys-
tematic map) to identify the extent and form of literature
within NFSBST. The results of our systematic map indi-
cates that NFSBST is focused on five areas, with execu-
tion time testing being the most researched non-functional
property. This indicates that execution time testing repre-
sents a suitable search problem. On the other hand, for ex-
ecution time testing this might also mark the beginning of
more in-depth analysis of problem characteristics including
comparative and performance evaluation studies [21, 22].
As compared to execution time testing, the application of
metaheuristic search techniques for detecting buffer over-
flows, usability testing, safety testing and quality of service
is more recent. Further feedback from empirical studies into

these niche non-functional areas is required to gain confi-
dence into the efficacy when applying search-based tech-
niques.

We also find that the current taxonomies for non-
functional properties need to assemble a more complete set
of non-functional properties for software systems.

Apart from the final set of 35 papers, our search also
resulted in studies which, although, applies search-based
techniques, are not related to test data generation. Examples
of such studies include reliability modeling [44] and test
planning [16]. Studies relevant to test planning reflects the
growing application of metaheuristics across the software
testing lifecycle, while studies related to reliability model-
ing offers yet another dimension where the application of
search techniques can offer near optimal solutions. These
studies, together with existing SBST literature, can offer an
exciting future arena where studies are not only limited to
automated software test data generation but also extended
to address broader verification and validation problems that
are open to the application of search-based techniques. Our
future work with a systematic review should explore these
possibilities in more detail.

In terms of validity threats, there is a possibility that we
might have missed relevant studies. However, our rigorous
search strategy (Subsection 2.1) should have assembled a
reasonable sample.

6. Conclusions

This work presents initial findings related to the ap-
plication of metaheuristic search techniques to test non-
functional properties. A total of 35 papers published in
the years 1996–2007 are used a basis to map the applica-
tion of metaheuristic search techniques to five different non-
functional areas of execution time, quality of service, buffer
overflow, usability and safety.

We presented an analysis of these studies in terms of
problem objective, applied metaheuristic and range of fit-
ness functions used. A large percentage (42.8%) of the stud-
ies deal with execution time testing with evidence of exper-
imentation with real world applications. Regarding the rest
of the non-functional properties, further feedback from em-
pirical studies is desirable. We also found that diverse meta-
heuristic search techniques have been applied to achieve
problem-specific objectives, with genetic algorithms being
the most frequently used metaheuristic.

There is still plenty of potential for automating non-
functional testing using search-based techniques. The re-
sults of our systematic map also indicate that the current
body of knowledge concerning SBST does not report stud-
ies on many of the other non-functional properties. On the
other hand, there is a need to extend the early optimistic re-
sults of applying NFSBST to larger real world systems, thus



moving towards a generalization of results.
Future work includes extending the presented results into

a systematic literature review.

References

[1] O. Abdellatif-Kaddour, P. Thevenod-Fosse, and H. Waese-
lynck. Property-Oriented Testing based on Simulated An-
nealing. In Proceedings of ACS/IEEE International Con-
ference on Computer Systems and Applications (AICCSA’
2003), Tunis (Tunisie), 2003.

[2] J. T. Alander, T. Mantere, and G. Moghadampour. Search-
ing Protection Relay Response Time Extremes using Ge-
netic Algorithm – Software Quality by Optimization. In
Proceedings of the 4th International Conference on Ad-
vances in Power System Control, Operation and Manage-
ment, APSCOM-97, Hong Kong, November 1997.

[3] E. Alba and F. Chicano. Finding Safety Errors with ACO.
In Proceedings of 9th Annual Conference on Genetic and
Evolutionary Computation, ACM, New York, USA, 2007.

[4] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brere-
ton, and S. Linkman. Evidence Relating to Object-Oriented
Software Design: A Survey. In Proceedings of First Interna-
tional Symposium on Empirical Software Engineering and
Measurement, IEEE, 2007.

[5] A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and
Functional Sequence Test of Dynamic and State-Based Soft-
ware with Evolutionary Algorithms. In Proceedings of Ge-
netic and Evolutionary Computation Conference (GECCO
2003), Lecture Notes in Computer Science (LNCS 2724),
Springer–Verlag, Berlin, Germany, 2003.

[6] S. Boukif, H. Sahraoui, and G. Antoniol. Simulated Anneal-
ing for Software Quality Prediction. In Proceedings of the
8th Annual Conference on Genetic and Evolutionary Com-
putation, ACM, New York, USA, 2006.

[7] L. C. Briand, Y. Labiche, and M. Shousha. Stress Testing
Real-Time Systems with Genetic Algorithms. In Proceed-
ings of the 2005 Conference on Genetic and Evolutionary
Computation, GECCO 05, Washington, DC, USA, June 25–
29 2005.

[8] R. C. Bryce and C. J. Colbourn. One-Test-at-a-Time Heuris-
tic Search for Interaction Test Suits. In Proceedings of the
2007 Conference on Genetic and Evolutionary Computa-
tion, GECCO 07, London, UK, July 7–11, 2007.

[9] J. Budynek, E. Bonabeau, and B. Shargel. Evolving Com-
puter Intrusion Scripts for Vulnerability Assessment and
Log Analysis. In Proceedings of the 2005 Conference on
Genetic and Evolutionary Computation, GECCO 05, pages
153–160, Washington, DC, USA, June 25–29, 2005.

[10] E. K. Burke and G. Kendall. Search Methodologies – In-
troductory Tutorials in Optimization and Decision Support
Techniques. Springer Science and Business Media, New
York, USA, 2005.

[11] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.
Search-based Testing of Service Level Agreements. In Pro-
ceedings of the Conference on Genetic and Evolutionary
Computation, GECCO ’07, London, UK, July 7–11, 2007.

[12] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.
An Approach for QoS-aware Service Composition based on
Genetic Algorithms. In GECCO 05: Proceedings of the
2005 Conference on Genetic and Evolutionary Computa-
tion, Washington, DC, USA, June 25–29, 2005.

[13] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Construct-
ing Strength Three Covering Arrays with Augmented An-
nealing. Discrete Mathematics, 2003.

[14] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Col-
bourn. Constructing Test Suites for Interaction Testing. In
Proceedings of the 25th International Conference on Soft-
ware Engineering (ICSE 03), IEEE, 2003.

[15] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Col-
bourn, and J. S. Collofello. Variable Strength Interaction
Testing of Components. In Proceedings of the 27th Annual
International Computer Software and Applications Confer-
ence (COMPSAC 03), IEEE, 2003.

[16] Y. S. Dal, M. Xie, K. L. Poh, and B. Yang. Optimal Testing-
Resource Allocation with Genetic Algorithm for Modular
Software Systems. The Journal of Systems and Software,
66(1), 2003.

[17] K. Derdarian, R. M. Hierons, M. Harman, and Q. Guo. In-
put Sequence Generation for Testing of Communicating Fi-
nite State Machines (CFSMs). In Proceedings of Genetic
and Evolutionary Computation Conference (GECCO 2004),
Lecture Notes in Computer Science (LNCS 3103), Springer–
Verlag, Berlin, Germany, 2004.

[18] G. Dozier, D. Brown, J. Hurley, and K. Cain. Vulnerabil-
ity Analysis of Immunity-Based Intrusion Detection Sys-
tems Using Evolutionary Hackers. In Proceedings of the
2004 Conference on Genetic and Evolutionary Computa-
tion, GECCO 04, Seattle, Washington, USA, June 26–30,
2004.

[19] N. E. Fenton and S. L. Pfleeger. Sofware Metrics - A Rig-
orous and Practical Approach, 2nd Edition. International
Thomson Computer Press, Boston, USA, 1996.

[20] D. G. Firesmith. Common Concepts Underlying Safety,
Security, and Survivability Engineering. Technical Note
CMU/SEI-2003-TN-033, Carnegie Mellon Software Engi-
neering Institute, 2003.

[21] H. G. Gross. A Prediction System for Dynamic
Optimization-based Execution Time Analysis. In Proceed-
ings of First International Workshop on Software Engineer-
ing using Metaheuristic Innovative Algorithms (SEMINAL),
ICSE 2001, Toronto, 2001.

[22] H. G. Gross. An Evaluation of Dynamic, Optimization-
based Worst-case Execution Time Analysis. In Proceedings
of the International Conference on Information Technology:
Prospects and Challenges in the 21st Century, Kathmandu,
Nepal, 2003.

[23] H. G. Gross, B. F. Jones, and D. E. Eyres. Structural Perfor-
mance Measure of Evolutionary Testing Applied to Worst-
case Timing of Real-time Systems. Proceedings of IEE Soft-
ware, 147(2), 2000.

[24] C. Grosso, G. Antoniol, M. D. Penta, P. Galinier, and
E. Merlo. Improving Network Applications Security: a New
Heuristic to Generate Stress Testing Data. In Proceedings of
the Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 05, ACM, New York, USA, 2005.



[25] C. D. Grosso, G. Antoniol, E. Merlo, and P. Galinear. De-
tecting Buffer Overow via Automatic Test Input Data Gener-
ation. Computers and Operations Research, Elsevier, 2007.

[26] A. G. H. Pohlheim, M. Conrad. Evolutionary Safety Test-
ing of Embedded Control Software by Automatically Gen-
erating Compact Test Data Sequences. In SAE 2005 World
Congress Exhibition, Detroit, MI, USA, April 2005.

[27] M. Harman. The Current State and Future of Search-based
Software Engineering. In Proceedings of Future of Software
Engineering (FOSE 07) at 29th International Conference on
Software Engineering. IEEE Computer Society, USA, 2007.

[28] M. Harman and B. Jones. Search-based Software Engineer-
ing. Information and Software Technology, 43(14), 2001.

[29] IEEE Std 830-1998. IEEE Recommended Practice for Soft-
ware Requirements Specifications, 1998.

[30] International Standard. ISO/IEC 9126-1:2001 Software En-
gineering Product Quality Part 1: Quality Model, 2001.

[31] H. G. Kayacik, M. Heywood, and A. N. Zincir-Heywood.
On Evolving Buffer Overflow Attacks Using Genetic Pro-
gramming. In Proceedings of the 2006 Conference on Ge-
netic and Evolutionary Computation, GECCO 06, Seattle,
Washington, USA, July 8–12, 2006.

[32] H. G. Kayacik, A. N. Zincir-Heywood, and M. Heywood.
Evolving Successful Stack Overflow Attacks for Vulnerabil-
ity Testing. In Proceedings of the 21st Annual Computer Se-
curity Applications Conference (ACSAC 2005), IEEE, 2005.

[33] H. G. Kayacik, A. N. Zincir-Heywood, and M. Heywood.
Automatically Evading IDS Using GP Authored Attacks. In
Proceedings of the IEEE Computational intelligence in Se-
curity and Defense Applications - CISDA 2007, pages 153–
160, April 2007.

[34] B. Kitchenham. Guidelines for Performing Systematic Lit-
erature Reviews in Software Engineering. Technical Re-
port EBSE-2007-01, Keele University and University of
Durham, UK, 2007.

[35] J. Koljonen, M. Mannila, and M. Wanne. Testing the Per-
formance of a 2D Nearest Point Algorithm with Genetic Al-
gorithm Generated Gaussian Distributions. Expert Systems
with Applications, 32(3), 2007.

[36] P. McMinn. Search-Based Software Test Data Generation:
A Survey. Software Testing,Verification and Reliability,
14(2), 2004.

[37] F. Mueller and J. Wegener. A Comparison of Static Analysis
and Evolutionary Testing for the Verication of Timing Con-
straints. In Proceedings of the 4th IEEE Real-Time Technol-
ogy and Applications Symposium, Denver, USA, June 1998.

[38] K. J. Nurmela. Upper Bounds for Covering Arrays by Tabu
Search. Discrete Applied Mathematics, Elsevier, 2003.

[39] M. OSullivan, S. Vossner, and J. Wegener. Testing Temporal
Correctness of Real-Time Systems - A New Approach using
Genetic Algorithms and Cluster Analysis. In Proceedings of
the 6th European Conference on Software Testing, Analysis
Review (EuroSTAR 1998), Munich, Germany, 1998.

[40] H. Pohlheim and J. Wegener. Testing the Temporal Behavior
of Real-Time Software Modules using Extended Evolution-
ary Algorithms. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO), 1999.

[41] P. Puschner and R. Nossal. Testing the Results of Static
Worst-Case Execution-Time Analysis. In Proceedings of
the 19th IEEE Real-Time Systems Symposium (RTSS ’98),
Madrid, Spain, December 1998.

[42] A. C. Schultz, J. J. Grefenstette, and K. A. D. Jong. Adap-
tive Testing of Controllers for Autonomous Vehicles. In Pro-
ceedings of the 1992 Symposium on Autonomous Underwa-
ter Vehicle Technology. IEEE, 1992.

[43] A. C. Schultz, J. J. Grefenstette, and K. A. D. Jong. Learning
to Break Things: Adaptive Testing of Intelligent Controllers.
Naval Research Laboratory, Oxford University Press, 1995.

[44] A. Sheta. Reliability Growth Modeling for Software Fault
Detection Using Particle Swarm Optimization. In IEEE
Congress on Evolutionary Computation. IEEE, 2006.

[45] T. Shiba, T. Tsuchiya, and T. Kikuno. Using Artificial Life
Techniques to Generate Test Cases for Combinatorial Test-
ing. In Proceedings of the 28th Annual International Com-
puter Software and Applications Conference (COMPSAC
04), IEEE, 2004.

[46] J. Stardom. Metaheuristics and the Search for Covering and
Packing Arrays. Masters Thesis, Simon Fraser University,
2001.

[47] M. Tlili, S. Wappler, and H. Sthamer. Improving Evolution-
ary Real-Time Testing. In Proceedings of the 2006 Con-
ference on Genetic and Evolutionary Computation, GECCO
06, Seattle, Washington, USA, July 8–12 2006.

[48] N. Tracey, J. Clark, and K. Mander. The Way Forward for
Unifying Dynamic Test Case Generation: The Optimisation
– Based Approach. In International Workshop on Depend-
able Computing and Its Applications, IFIP, 1998.

[49] N. J. Tracey, J. Clark, J. McDermid, and K.Mander. Inte-
grating Safety Analysis with Automatic Test Data Genera-
tion for Software Safety Verification. In Proceedings of the
17th International Conference on System Safety, IEEE, Au-
gust 1999.

[50] K. R. Walcott, M. Soffa, G. M. Kapfhammer, and R. Roos.
TimeAware Test Suite Prioritization. In Proceedings of
the 2006 International Symposium on Software Testing and
Analysis, ACM, New York, USA, 2006.

[51] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer, and
B. Jones. Systematic Testing of Real-time Systems. In
Proceedings of the 4th European Conference on Software
Testing, Analysis Review (EuroSTAR 1996), Amsterdam,
Netherlands, December 1996.

[52] J. Wegener and M. Grochtmann. Verifying Timing Con-
straints of Real-Time Systems by Means of Evolutionary
Testing. Real-time Systems, 1998.

[53] J. Wegener, R. Pitschinetz, and H. Sthamer. Automated Test-
ing of Real-Time Tasks. In Proceedings of the 1st Interna-
tional Workshop on Automated Program Analysis, Testing
and Verification, Limerick, Ireland, June 2000.

[54] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Test-
ing Real-time Systems Using Genetic Algorithms. Software
Quality Journal, 6(2):127–135, June 1997.

[55] Y. Zhan and J. Clark. Search-based Automatic Test-Data
Generation at an Architectural Level. In Proceedings of Ge-
netic and Evolutionary Computation Conference (GECCO
2004), Lecture Notes in Computer Science (LNCS 3103),
Springer–Verlag, Berlin, Germany, 2004.


