
A Concept for an Interactive Search-Based
Software Testing System

Bogdan Marculescu, Robert Feldt, and Richard Torkar

Blekinge Institute of Technology,
School of Computing
Karlskrona, Sweden

bogdan.marculescu@bth.se

Abstract. Software is an increasingly important part of various prod-
ucts, although not always the dominant component. For these software-
intensive systems it is common that the software assembled, and some-
times even developed, by domain specialists rather than by software en-
gineers. To leverage the domain specialists’ knowledge while maintaining
quality we need testing tools that require only limited knowledge of soft-
ware testing.

Since each domain has unique quality criteria and trade-offs and there is
large variation in both software modeling and implementation syntax as
well as semantics it is not easy to envisage general software engineering
support for testing tasks. Particularly not since such support must allow
interaction between the domain specialists and the testing system for
iterative development.

In this paper we argue that search-based software testing can provide
this type of general and interactive testing support and describe a proof
of concept system to support this argument. The system separates the
software engineering concerns from the domain concerns and allows do-
main specialists to interact with the system in order to select the quality
criteria being used to determine the fitness of potential solutions.

Keywords: search-based software testing, interactive search-based soft-
ware engineering, user centered

1 Introduction

There is an increasing integration of software into many products. This makes
software quality a relevant factor in the overall quality of all such products.
However, systems engineers and integrators are not software engineering experts
and, in particular, have little or no software testing experience.

One option to ensure proper quality of the software being integrated is to
involve dedicated software engineers to handle software development and test-
ing. There are, however, drawbacks to this approach. First, this approach is
quite costly. This is all the more valid for smaller companies that do not have
the resources to accommodate this expense. Another drawback is that software



2 B. Marculescu, R. Feldt, R. Torkar

engineers do no have the domain expertise required to test a software compo-
nent for the environment in which it will have to operate. Thus, if not adapted
to the context, the software in question may have a lower quality as a system
component, in spite of having high quality as a software component.

An alternative option is to package general testing solutions to be usable
by non-experts in software engineering, i.e. systems engineers and integrators.
This would allow the domain expertise of the systems engineers to be fully used,
whilst still applying proven solutions for software testing.

Search-Based Software Testing (SBST) is an excellent fit for the latter option.
It has been shown to be a good approach for many different types of testing [1,
2]. It consists of a very generic search component, while those components that
are domain-specific are those that systems engineers and domain specialists have
their expertise in. These domain-specific components are the representation of
the problem and the software as well as the quality criteria used for evaluation.

The contribution of this paper, therefore, is to propose a search-based soft-
ware testing system that allows domain-specialist users to create test cases for
the software they produce, without the need for specialized knowledge of software
testing or search-based techniques.

2 Background

Search-Based Software Testing (SBST) is the application of search techniques
to the problem of software testing. SBST has been applied to a variety of test-
ing problems [1, 2], from object-oriented containers [3] to dynamic programming
languages [4]. SBST is a part of the wider area of Search-Based Software Engi-
neering (SBSE), a term coined by Harman and Jones in 2001 [5], but a concept
used earlier, see e.g. [6–8]. Since search-based approaches have been applied
across the software development life-cycle [9], it is reasonable to expect that any
conclusions referring to the general area of SBSE can be applied to the particular
case of SBST.

The context of the system proposed in this work is that of software test-
ing performed by domain specialists with relatively little knowledge of software
testing or search-based techniques. The domain specialists would have extensive
knowledge of the capabilities of the system-under-development, its own context
and the limitations placed upon it, as well as the quality foci that they would
have to pursue for each component of that system.

The combination of non-specialist software developers and the importance
of domain knowledge and limitations makes it impractical to develop a fitness
function up-front. To develop an appropriate fitness function for the component
under test, the domain specialist would have to interact with the system and
make adjustments to the criteria being used.



A Concept for an ISBST System 3

3 Interactive Search-Based Testing System

3.1 Running Example

To better illustrate the concepts discussed in this section, we will present an
anonymized industrial example. The application we will use is that of a controller
enabling a joystick or set of joysticks to handle a mechanical arm. The inputs
for the controller software are the joystick signals and sensors that indicate the
speed of the basket at the end of the crane. The outputs are the signals to the
hydraulic pumps that drive the arm.

The System Under Test (SUT), in this case, is the software for the controller
component. The goal of the Search-Based Software Testing System is to gener-
ate test cases that ensure the system’s compliance to quality standards, ensure
that no constraints are broken and discover any additional faults or unexpected
behavior.

The Search-Based Software Testing System is the result of applying the
methodology presented in this work in the company in question. The system
is meant to be tailored for the specific context and company it is expected to
function in, yet be general enough to enable domain specialists to test new ap-
plications within the confines of that context.

3.2 Overview and Components

The figure 1 shows the structure of a complex Interactive Search-Based Software
Testing system developed using the proposed methodology.

Interaction 
Handler

Domain 
Specialist

User Feedback

Solution 
Candidate 
Generator

Intermediate 
Fitness 

Function

I. Inner CycleII. Outer Cycle

Items Proposed for Evaluation

Fig. 1. Overview of an ISBSE system.

Outer Cycle. The outer cycle is an interactive search-based system that uses
the human domain specialist as a fitness function. It mediates the interaction
between the domain specialist and the system by means of a component called
Interaction Handler. For the purpose of this discussion we call a potential solu-
tion, or a solution candidate, any individual that is part of the population the
human user is expected to evaluate.



4 B. Marculescu, R. Feldt, R. Torkar

The purpose of the Interaction Handler is to display the potential solutions
shown to the human domain specialist and to collect their feedback. Feedback,
in the type of system being proposed can refer to three separate issues:

– Solution Candidate Feedback. This describes feedback related to the
solution candidates. In addition to selecting potential solutions for the next
generation, the human domain specialist may assign values to each solution
candidate they select for the next generation, giving them an evolutionary
advantage.

– Display Feedback. This describes feedback related to the way solution
candidates are displayed, the number of candidates displayed, and any ad-
ditional information that is available or can be made available. Considering
our running example discussed above, a domain specialist may choose to
see memory required, response times for the output signals or discrepancies
between expected output signals and actual output signals, in addition to
the pass or fail status of each suite.

– Quality Focus Feedback. Since a search-based system can generate more
solution candidates that a human can be expected to evaluate, some internal
mechanism exists to enable a preliminary selection of potential solutions.
This type of feedback allows the domain specialist to set or change the
criteria by which this preliminary selection is performed. As the search for
appropriate test cases goes on, it may become necessary to adjust the quality
foci that set the selection criteria. As an example, an initial requirement of
the joystick controller in our example may concern appropriate timing or
accuracy of the output signal. Once the module is considered satisfactory
from that perspective, searching for large variations or undesired behaviors
may become more important. This type of feedback would allow the domain
specialist to alter the focus of the search without restarting the search, and
thus preserving the characteristics of the solution candidates already in the
population.

The replacement of the fitness function with a human domain specialist re-
stricts the number of potential solutions that the system can process in this
manner. The additional information that the human can provide is an attempt
to compensate for the lower number of solution candidates being processed by
improving the selection mechanisms internal to the system.

Inner Cycle. The inner cycle is a search-based software testing system that uses
a flexible fitness function. The purpose of this system is to generate and select
the best solution candidates for the human domain expert to evaluate. This
is meant to fully benefit from exploratory capabilities of search-based systems
[10], while still allowing the human domain expert to apply their experience and
insight.

The inner cycle itself has two components:

– Search Component. The purpose of the Search Component is to encap-
sulate the algorithm that creates the new generation of potential solutions.



A Concept for an ISBST System 5

Encapsulating this component allow the existing algorithm to be changed,
should the need for such a change arise.

– Intermediate Fitness Function. This component serves the purpose of
the fitness function in any search-based system: it assigns each potential
solution a fitness value. The difference consists of allowing changes to be
made to this component during the search process. Such changes originate
in the feedback the human domain specialist provides and allows them to
influence the direction of the automated search as well as performing their
own selection.
The purpose of this component is not to replace human input, but rather
to provide an initial screening of solution candidates, so that only those
solution that are most likely to be successful are analyzed by the human
domain specialist.

The interaction between the inner and outer cycles is achieved through the
populations of candidates, the evaluations made by the domain expert and the
feedback that guide the Intermediate Fitness Function. The generation and se-
lection of the population, as well as the internal workings of the inner cycle are
hidden from the domain expert.

4 Validation and Discussion

Validation efforts are focused on the development of a proof of concept system.
This system is being developed in cooperation with an industrial partner and
the initial validation will take place in that context.

The system presented here is designed specifically to address situations where
domain expertise is the deciding factor in successful testing. This can be due to
the complexity of the system under test and the influence external factors may
have in its operation, as well as limitations in terms of the resources available
for testing.

5 Conlusions

This paper has proposed a search-based software testing system designed to allow
domain specialists with little software testing expertise to develop test cases
for their applications. The value of such systems would be especially relevant
for contexts were software testing experts are not available or where domain
knowledge is the deciding factor in the success of the testing process.

References

1. McMinn, P.: Search-based software testing: Past, present and future. Fourth Inter-
national Conference on Software Testing, Verification and Validation Workshops
(2011) 153–163



6 B. Marculescu, R. Feldt, R. Torkar

2. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for
non-functional system properties. Information and Software Technology (2009)

3. Arcuri, A., Yao, X.: Search based software testing of object-oriented containers.
Information Sciences 178(15) (2008) 3075 – 3095

4. Mairhofer, S., Feldt, R., Torkar, R.: Search-based software testing and test data
generation for a dynamic programming language. In: Proceedings of the 13th
annual conference on Genetic and evolutionary computation. GECCO ’11, New
York, NY, USA, ACM (2011) 1859–1866

5. Harman, M., Jones, B.F.: Search based software engineering. Information and
Software Technology (43) (2001) 833–839

6. Xanthakis, S., Ellis, C., Skourlas, C., Gall, A.L., Katsikas, S., Karapoulios, K.: Ap-
plication of genetic algorithms to software testing. In: Proceedings of the 5th Inter-
national Conference on Software Engineering and Applications, Toulouse, France
(7-11 December 1992) 625–636

7. Feldt, R.: Generating multiple diverse software versions with genetic programming
- an experimental study. IEE Proceedings - Software 145(6) (December 1998)
228–236

8. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: A
comprehensive analysis and review of trends techniques and applications. Technical
Report TR-09-03 (April 2009)

9. Harman, M.: The current state and future of search based software engineering.
Future of Software Engineering (FOSE’07) (2007)

10. Feldt, R.: Genetic programming as an explorative tool in early software develop-
ment phases. In: Proceedings of the 1st International Workshop on Soft Comput-
ing Applied to Software Engineering (SCASE ’99), University of Limerick, Ireland,
Limerick University Press (12-14 April 1999) 11–20

11. Simons, C.L., Parmee, I.C., Gwynllyw, R.: Interactive, evolutionary search in
upstream object-oriented class design. IEEE Transactions on Software Engineering
36(6) (November/December 2010) 798–816

12. Simons, C., Parmee, I.: User-centered, evolutionary search in conceptual software
design. In: Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress
on Computational Intelligence). IEEE Congress on. (june 2008) 869 –876

13. Farrington, J.: Seven plus or minus two. Performance Improvement Quarterly
24(4) (2011) 113116

14. Tarnow, E.: There is no capacity limited buffer in the murdock (1962) free recall
data. Cognitive Neurodynamics 4 (2010) 395–397 10.1007/s11571-010-9108-y.

15. Metzger, U., Parasuraman, R.: Automation in future air traffic management: Ef-
fects of decision aid reliability on controller performance and mental workload.
Human Factors: The Journal of the Human Factors and Ergonomics Society 47(1)
(Spring 2005) 35–49

16. Maguire, M.: Methods to support human-centred design. International Journal of
Human-Computer Studies 55(4) (2001) 587 – 634

17. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of ec
optimization and human evaluation. Proceedings of the IEEE 89(9) (sep 2001)
1275 –1296

18. Kamalian, R., Yeh, E., Zhang, Y., Agogino, A., Takagi, H.: Reducing human
fatigue in interactive evolutionary computation through fuzzy systems and machine
learning systems. In: Fuzzy Systems, 2006 IEEE International Conference on. (0-0
2006) 678 –684

19. Feldt, R.: An interactive software development workbench based on biomimetic
algorithms. Technical Report 02-16, Gothenburg, Sweden (November 2002)


