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Abstract 

Software fault prediction can play an important role in ensuring software quality through 

efficient resource allocation. This could, in turn, reduce the potentially high consequential costs 

due to faults. Predicting faults might be even more important with the emergence of short-timed 

and multiple software releases aimed at quick delivery of functionality. Previous research in 

software fault prediction has indicated that there is a need i) to improve the validity of results by 

having comparisons among number of data sets from a variety of software, ii) to use appropriate 

model evaluation measures and iii) to use statistical testing procedures. Moreover, cross-release 

prediction of faults has not yet achieved sufficient attention in the literature. In an attempt to 

address these concerns, this paper compares the quantitative and qualitative attributes of 7 

traditional and machine-learning techniques for modeling the cross-release prediction of fault 

count data. The comparison is done using extensive data sets gathered from a total of 7 multi-

release open-source and industrial software projects. These software projects together have 

several years of development and are from diverse application areas, ranging from a web 

browser to a robotic controller software. Our quantitative analysis suggests that genetic 

programming (GP) tends to have better consistency in terms of goodness of fit and accuracy 

across majority of data sets. It also has comparatively less model bias. Qualitatively, ease of 

configuration and complexity are less strong points for GP even though it shows generality and 

gives transparent models. Artificial neural networks did not perform as well as expected while 

linear regression gave average predictions in terms of goodness of fit and accuracy. Support 

vector machine regression and traditional software reliability growth models performed below 



 

average on most of the quantitative evaluation criteria while remained on average for most of the 

qualitative measures. 



 

1. Introduction 

The development of quality software on time and within stipulated cost is a challenging 

task. One influential factor in software quality is the presence of software faults, which have a 

potentially considerable impact on timely and cost-effective software development. Thus fault 

prediction models have attracted considerable interest in research (as shown in Section 2). A 

fault prediction model uses historic software quality data in the form of metrics (including 

software fault data) to predict the number of software faults in a module or a release (Taghi and 

Naeem, 2002). Fault predictions for a software release are fundamental to the efforts of 

quantifying software quality. A fault prediction model helps a software development team in 

prioritizing the effort spent on a software project and also for selective architectural 

improvements. This paper presents both quantitative and qualitative evaluations of using genetic 

programming (GP) for cross-release predictions of fault count data gathered from open source 

and industrial software projects. Fault counts denotes the cumulative faults aggregated on a 

weekly or monthly basis. We quantitatively compare the results from traditional and machine 

learning approaches to fault count predictions and also assess various qualitative criteria for a 

better trade-off analysis. The main purpose is to increase empirical knowledge concerning 

innovative ways of predicting fault count data and to apply the resulting models in a manner that 

is suited to multi-release software development projects. 

Regardless of large number of studies on software fault prediction, there is little 

convergence of results across them. This non-convergence of results is also highlighted by other 

authors such as (Stefan, Bart, Christophe & Swantje, 2008; Magnus and Per, 2002). This 

necessitates further research to increase confidence in the results of fault prediction studies. 

Stefan et al. (2008) identifies three sources of bias in fault prediction studies: use of small and 



 

proprietary data sets, inappropriate accuracy indicators and limited used of statistical testing 

procedures. Magnus and Per (2002) further highlight the need for the authors to provide 

information about context, data characteristics, statistical methods and chosen parameters; so as 

to encourage replications of these studies. These factors, more or less, contribute to a lack of 

benchmarking in software fault prediction studies. Therefore, benchmarking, although 

recommended by (Susan, Steve & Richard, 2003) as a way to advance research, is still open for 

further research in software fault prediction studies. 

One challenge in having trustworthy software fault prediction models is the nature of 

typical software engineering data sets. Software engineering data come with certain 

characteristics that complicate the task of having accurate software fault prediction models. 

These characteristics include missing data, large number of variables, strong co-linearity 

between the variables, heteroscedasticity1, complex non-linear relationships, outliers and small 

size (Gray and MacDonell, 1997). Therefore, “it is very difficult to make valid assumptions 

about the form of the functional relationship between the variables” (Lionel, Victor & William, 

1992, pp. 931). Moreover, the acceptability of models has seen little success due to lack of 

meaningful explanation of the relationship among different variables and lack of generalizability 

of model results (Gray and MacDonell, 1997). Applications of computational and artificial 

intelligence have attempted to deal with some of these challenges, see e.g. (Zhang and Tsai, 

2003), mainly because of their inherent intelligent modeling mechanisms to deal with data. There 

are several reasons for using these techniques for fault prediction modeling: 

1. They do not depend on assumptions about data distribution and relationship 

between independent and dependent variables.  

                                                
1 A sequence of random variables with different variances. 



 

2. They are independent of any assumptions about the stochastic behavior of 

software failure process and the nature of software faults (Yu-Shen and Chin-Yu, 

2007). 

3. They do not conceive a particular structure for the resulting model. 

4. The model and the associated coefficients can be evolved based on the fault data 

collected during the initial test phase.   

While the use of artificial intelligence and machine learning is applied with some success 

in software reliability growth modeling and software fault predictions, only a small number of 

these studies make use of data from large industrial software projects; see e.g. (Tian and Noore, 

2005). Performing large empirical studies is hard due to difficulties in getting necessary data 

from large software projects, but if we want to generalize the use of some technique or method, 

larger type software need to be investigated to gain better understanding. Moreover, due to the 

novelty of applying artificial intelligence and machine learning approaches, researchers many 

times focus more on introducing new approaches on a smaller scale than validating existing 

approaches on a larger scale. In this paper we try to focus on the latter part. 

Another dimension that lacks researchers' attention is cross-release prediction of faults. 

With the growing adoption of agile software development methodologies, prediction of faults in 

subsequent releases of software will be an important decision tool. With short-timed releases, the 

software development team might not be inclined towards gathering many different program 

metrics in a current release of a project. Therefore, machine-learning techniques can make use of 

less and commonly used historical data to become a useful alternative in predicting the number 

of faults across different releases of a software project. 



 

The goals of this study differ in some important ways from related prior studies (Section 2). 

Our main focus is on evaluating genetic programming (GP) for cross-release prediction of fault 

counts on data set from large real world projects; to our knowledge this is novel. We evaluate the 

created models on fault data from several large and real world software projects, some from 

open-source and some from industrial software systems (See Section 3). 

Our study is also unique in comparing multiple different fault count modeling techniques, 

both traditional and several machine learning approaches. The traditional approaches we have 

selected are three software reliability growth models (SRGMs) that represent the fault count 

family of models (Goel, 1985). These three models are Goel-Okumoto non-homogeneous 

Poisson process model (GO) (Goel and Okumoto, 1979), Brooks and Motley's Poisson model 

(BMP) (Brooks and Motley, 1980) and Yamada's S-Shaped growth model (YAM) (Yamada and 

Osaki, 1983). We selected them because these models provide a fair representation of the fault 

count family of models (representing different forms of growth curves). In particular, GO and 

BMP are concave (or exponential) while YAM is S-shaped. We also include a simple and 

standard least-squares linear regression as a baseline. 

The machine learning approaches we compare with are artificial neural networks (ANN) 

and support vector machine regression (SVM). We selected these because they are very 

different/disparate and have seen much interest in the machine learning (ML) communities of 

late, see e.g. (Tian and Noore, 2007; Raj and Ravi, 2008, Khoshgoftaar and Yi, 2007) for some 

examples. 

Our main goal is to answer the question: 

Is GP a better approach for cross release prediction of fault counts compared to traditional 

and machine learning approaches on fault data from large and real-world software projects? 



 

To answer it we have identified a number of more detailed research questions listed in 

Section 4. By applying the model creation approaches described above and by answering the 

research questions the paper makes the following contributions: 

1. Quantitative and qualitative assessment of the generalizability and real-world 

applicability of different modeling techniques by the use of extensive data sets 

covering both open source and industrial software projects. 

2. Use of GP for cross-release fault predictions. 

3. Comparative evaluations with both traditional and machine learning models for 

cross-release prediction of fault count data. 

The remainder of this paper is organized as follows. In Section 2, we present the 

background for this study. Section 3 elaborates on the data collection procedure. Section 4 

describes the research questions, while Section 6 provides a brief introduction to the techniques 

used in the study. Section 5 describes the different evaluation measures used in the study while 

Section 7 covers the application of different techniques and the corresponding evaluation. 

Validity evaluation is presented in Section 8 while discussion and conclusions are presented in 

Section 9. 

2. Related work 

The research into software quality modeling based on software metrics is “used to predict 

the response variable which can either be the class of a module (e.g. fault-prone and not fault-

prone) or a quality factor (e.g. number of faults) for a module” (Khoshgoftaar and Seliya, 2003, 

pp. 256). The applicable methods include statistical methods (random-time approach, stochastic 

approach), machine learning methods and mixed algorithms (Venkata, Farokh, Yen and 

Raymond, 2005). Despite the presence of large number of models, there is little agreement 



 

within the research community about the best model (Stefan et al. 2008). The result is that the 

prediction problem is seen as being largely unsolvable and NP-hard (Venkata et al., 2005; Martin 

and Gada, 2001). Due to a large number of studies covering software quality modeling (for both 

classifying fault-proneness and predicting software faults), the below references are more 

representative than exhaustive. 

Kehan and Khoshgoftaar (2007) empirically evaluated eight statistical count models for 

software quality prediction. They showed that with a very large number of zero response 

variables, the zero inflated and hurdle count models are more appropriate. The study by Yu, Shen 

& Dunsmore (1988) used number of faults detected in earlier phases of the development process 

to predict the number of faults later in the process. They compared linear regression with a 

revised form of, an earlier proposed, Remus-Zilles model. They found a strong relationship 

between the number of faults during earlier phases of development and those found later, 

especially with their revised model. Taghi, John, Bibhuti, & Gary (1992) showed that the 

typically used least squares linear regression and least absolute value linear regression do not 

predict software quality well when the data does not satisfy the normality assumption and thus 

two alternative parameter estimation procedures (relative least square and minimum relative 

error) were found more suitable in this case. In (Munson and Khoshgoftaar, 1992), discriminant 

analysis technique is used to classify the programs into either fault prone and not fault prone 

based upon the uncorrelated measures of program complexity. Their technique was able to yield 

less Type II errors (mistakenly classifying a fault prone module as fault prone) on data sets from 

two commercial systems. 

In (Lionel, Victor & Christopher, 1993), optimized set reduction classifications (that 

generates logical expressions representing patterns in the data) were found to be more accurate 



 

than multivariate logistic regression and classification trees in modeling high-risk software 

components. The less optimistic results of using logistic regression are not in agreement with 

Khoshgoftaar's study (Khoshgoftaar and Allen, 1999), which supports using logistic regression 

for software quality classification. Also the study by (Giovanni and Mauro, 2002) used logistic 

regression to successfully classify faults across homogeneous applications. Victor, Lionel, Walc 

& Lio (1996) verified that most of Chidamber and Kemerer’s object-oriented metrics are useful 

quality indicators for fault-prone classes. Niclas, Christin & Mary, (1997) investigated the use of 

metrics for release n to identify the most fault prone modules in release n+1. In (Niclas, Ming & 

Mary, 1998), principal component analysis and discriminant analysis was used to rank the 

software modules in several groups according to fault proneness. 

Using the classification and regression trees (CART) algorithm, and by balancing the cost 

of misclassification, Taghi, Edward, Wendell and John (1999) showed that the classification-tree 

models based on several product, process and execution measurements were useful in quality 

classification for successive software releases. Lionel, Walcelio and Wust (2002) proposed 

Multivariate Adaptive Regression Splines (MARS) to classify object-oriented (OO) classes as 

either fault prone or not fault prone. MARS outclassed logistic regression with an added 

advantage that the functional form of MARS is not known a priori. In (Jeremy and Art, 2007), 

the authors show that static code attributes like McCabe's and Halstead's are valid attributes for 

fault prediction. It was further shown that naive Bayes outperformed the decision tree learning 

methods. 

We also find numerous studies making use of machine intelligence techniques for software 

fault prediction. Applications of artificial neural networks to fault predictions and reliability 



 

growth modeling mark the beginning of several studies using machine learning for 

approximations and predictions.  

Neural networks have been found to be a powerful alternative when noise in the input-

generating process complicates the analysis, a large number of attributes describe the 

inputs, conditions in the input-generating process change, available models account for 

some but not all of the data, the input-generating distribution is unknown and probably 

non-Gaussian, it is expensive to estimate statistical parameters, and nonlinear relationship 

are suspected (Laura, 1991, pp. 212). 

These characteristics are also common to data collected from a typical software 

development process. Karunanithi et al. published several studies (Karunanithi, Malaiya & 

Whitley, 1991; Nachimuthu, Darrell & Yashwant, 1992; Nachimuthu, Darrell & Yashwant, 1992; 

Karunanithi and Malaiya, 1996; Karunanithi, 1993) using neural network architectures for 

software reliability growth modeling. Other examples of studies reporting encouraging results 

include (Tian and Noore, 2005; Raj and Ravi, 2008; Khoshgoftaar, Pandya, & More, 1992; 

Khoshgoftaar, Allen, Hudepohl & Aud, 1997; Khoshgoftaar and Szabo, 1996; Tadashi, Yasuhiko 

& Shunji, 1999; Sitte, 1999; Aljahdali, Sheta & Rine, 2001; Adnan, Yaakob, Anas & Tamjis, 

2000; Guo and Lyu, 2004; Nidhi and Pratap, 2005; Ho, Xie & Goh, 2003; Tian and Noore, 2004; 

Tian and Noore, 2005; Tian and Noore, 2005). Kai-Yuan, Lin, Wei-Dong, Zhou-Yi, & David 

(2001) observed that the prediction results of ANNs show a positive overall pattern in terms of 

probability distribution but were found to be poor at quantitatively estimating the number of 

software faults. 

A study by (Gray and MacDonell, 1997) showed that neural network models show more 

predictive accuracy as compared with regression-based methods. The study also used a criteria-



 

based evaluation on conceptual requirements and concluded that not all modeling techniques suit 

all types of problems. CART-LAD (least absolute deviation) performed the best in a study by 

Khoshgoftaar et al. (Khoshgoftaar and Seliya, 2003) for fault prediction in a large 

telecommunications system in comparison with CART-LS (least squares), S-plus, regression tree 

algorithm, multiple linear regression, artificial neural networks and case-based reasoning. 

Tibor, Rudolf & Istvan (2005) used OO metrics for predicting number of faults in classes 

using logical and linear regression, decision tree and neural network methods. They found that 

the results from these methods were nearly similar. A recent study by Stefan et al. (2008) also 

concluded that with respect to classification, there were no significant differences among top 17 

of the classifiers used for comparison in the study. 

Apart from artificial neural networks, some authors have proposed using fuzzy models, as 

in (Cai, Wen & Zhang, 1991; Cai, Wen & Zhang, 1993; So, Cha & Kwon, 2002; Utkin, Gurov & 

Shubinsky, 2002), and support vector machines, as in (Tian and Noore, 2007), to characterize 

software reliability. 

In the later years, interest has shifted to evolutionary computation approaches for 

software reliability growth modeling. Genetic programming has been used for software 

reliability growth modeling in several studies (Eduardo, Silvia, Aurora & Gustavo, 2005; 

Eduardo, Aurora & Silvia, 2006; Costa, de Souza, Pozo, & Vergilio, 2007; Yongqiang and 

Huashan, 2006; Afzal, Torkar & Feldt, 2008; Wasif & Richard, 2008; Wasif and Richard, 2008). 

The comparisons with traditional software reliability growth models indicate that genetic 

programming has an edge with respect to predictive accuracy and does not need assumptions 

common in these traditional models. There are also several studies where genetic programming 



 

has been successfully used for software quality classification (Khoshgoftaar and Yi, 2007; Taghi, 

Yi & Naeem, 2004). 

There are also studies that use a combination of techniques, e.g. (Tian and Noore, 2007), 

where genetic algorithms are used to determine an optimal neural network architecture and in 

(Donald, 2002), where principal component analysis is used to enhance the performance of 

neural networks. 

As mentioned in Section 1, very few studies have looked at cross-release predictions of 

fault data on a large scale. Thomas and Elaine (2002) presented a case study using 13 releases of 

a large industrial inventory tracking system. Among several goals of that study, one was to 

investigate the fault persistence in the files between releases. The study concluded with moderate 

evidence supporting that files containing high number of faults in one release remain `high fault 

files' in later releases. The authors later extend their study in (Elaine, Thomas & Robert, 2005) by 

including four further releases. They investigated which files in the next release of the system 

were most likely to contain the largest number of faults. A negative binomial regression model 

was used to make accurate predictions about expected number of faults in each file of the next 

release of a system. 

3. Selection of fault count data sets 

We use fault count data from two different types of software projects: Open source 

software and industrial software. For all of these projects we have data for multiple releases of 

the same software system. Between releases there can be both changes and improvements to 

existing functionality as well as additions of new features. The software projects involved 

together represent several man years of development and span a multitude of different software 

applications targeting e.g. home users, small business users and industrial, embedded systems. 



 

The included open source systems are: Apache Tomcat2, OpenBSD3 and Mozilla 

Firefox4. Apache Tomcat is a servlet container implementing the Java servlet and the JavaServer 

Pages. Members of the Apache Software Foundation (ASF), and others, contribute in developing 

Apache Tomcat. OpenBSD is a UNIX-like operating system developed at the University of 

California, Berkley. OpenBSD supports a variety of hardware platforms and includes several 

extra security options like built-in cryptography. Mozilla Firefox is an open-source web-browser 

from the Mozilla Corporation, supporting a variety of operating systems. 

In the following, the fault count data from these open source software projects are 

referred to as OSStom, OSSbsd and OSSmoz, respectively. 

The industrial fault count data sets come from three large companies specializing in 

different domains. The first industrial data set (IND01) is from a European company in the space 

industry. The multi-release software is for an on-board computer used in a satellite system. It 

consists of about 70,000 lines of manually written C code for drivers and other low-level 

functions and about 230,000 lines of C code generated automatically from Simulink models. The 

total number of man-hours used to develop the software is on the order of 30,000. About 20% of 

this was spent in system testing and 40% in unit tests. The faults in the data set is only from 

system testing, the unit testing faults are not logged but are corrected before the final builds. 

The second and third fault count data sets (IND02, IND03) are taken from a power and 

automation company specializing in power products, power systems, automation products, 

process automation and robotics. IND02 comes from one of their robotic controller software that 

makes use of advanced motion technology to program robot systems. This software makes use of 

                                                
2 http://tomcat.apache.org/ 
3 http://www.openbsd.org 
4 http://www.mozilla.com/ 



 

a state-of-the-art self-optimizing motion technology, security and error handling mechanism and 

advanced user-authorization system. IND03 consists of fault count data from a robotic packaging 

software. This software comes with an advanced vision technique and integrated conveyor 

tracking capability; while being open to communicate with any external sensor.  The total 

number of man-hours used to develop the two projects is on the order of 2,000. 

The last data set, IND04, comes from a large mobile hydraulics company specializing in 

engineered hydraulic, electric and electronic systems. The fault count data set comes from one of 

their products, a graphical user interface integrated development environment, which is a part of 

family of products providing complete vehicle control solutions. The software allows graphical 

development of machine management applications and user-specific service and diagnostic tools. 

The software consists of about 350000 lines of hand written Delphi/Pascal code (90%) and C 

code (10%). Total development time is about 12000 man-days, 30% of this has been on system 

tests. 

3.1. Data collection process 

The fault count data from the three open source projects: Apache Tomcat (OSStom), 

OpenBSD (OSSbsd) and Mozilla Firefox (OSSmoz), come from web-based bug reporting 

systems. 

Figure 1. A sample bug report. 



 

 

As an example, Figure 1 shows a bug report for Mozilla Firefox. For OSStom and 

OSSmoz, we recorded the data from the `Reported' and `Version' fields as shown in the Figure 1. 

For OSSbsd, the data was recorded from the ‘Environment’ and ‘Arrival-Date’ fields of the bug 

reports. We include all user-submitted bug reports in our data collection because the core 

development team examines each bug report and decides upon a course to follow (Paul, Mary, 

Jim, Bonnie, & Santhanam, 2004). The severity of the user submitted faults was not considered 

as all submitted bug reports were treated equally. A reason for treating all user submitted bug 

reports as equal was to eliminate inaccuracy and subjective bias in assigning severity ratings. We 

were assisted by our industrial partners in provision of the fault count data sets IND01, IND02, 

IND03 and IND04.  

 

Table 1. Data collection from open source and industrial software projects, time span 

mentioned in () in the second column is same for the releases preceding. 



 

 

Table 1 show more details regarding the data collected from the open source and industry 

software projects, respectively. The data sets were impartially split into training and test sets. In 

line with the goals of the study (i.e. cross-release prediction), we used a finite number of fault 

count data from multiple releases as a training set. The resulting models were evaluated on a test 

set, comprising of fault count data from subsequent releases of respective software projects. The 

length of the test sets also determined the prediction strength x time units into future where x 

equals the length of the test set and is different for different data sets. We used the cumulative 

weekly count of faults for all the data sets, except for IND02 and IND03 for which the monthly 

cumulative counts were used due to the availability of the fault data in monthly format. 

4. Research questions 

Before presenting the empirical study in detail, where we compare different fault count 

modeling methods, we need to detail the specific research questions to be answered. Informally, 

we want to evaluate if GP can be a better approach for cross-release prediction of fault count 

data in general when compared with traditional and machine learning approaches. We quantify 

this evaluation in terms of goodness of fit, predictive accuracy, model bias and qualitative 

criteria: 



 

RQ 1: What is the goodness of fit (gof) of the GP-evolved model as compared with 

traditional and machine learning models for cross-release predictions? 

RQ 2: What are the levels of predictive accuracy of GP-evolved model for cross-release 

predictions as compared with traditional and machine learning models? 

RQ 3: What is the prediction bias of the GP-evolved model for cross-release prediction 

of fault count data as compared with traditional and machine learning models? 

RQ 4: How do the prediction techniques compare qualitatively in terms of generality, 

transparency, configurability and complexity? 

5. Evaluation measures 

Selecting appropriate evaluation measures for comparing the predictability of competing 

models is not trivial. A number of different accuracy indicators have been used for comparative 

analysis of models; see e.g. (Shepperd, Cartwright & Kadoda, 2000). Since a comparison of 

different measures is out of scope for this paper, we used multiple evaluation measures to 

increase confidence in model predictions; a recommended approach since we would have a hard 

time relying on a single evaluation measure (Nikora and Lyu, 1995). 

However, quantitative evaluation of predictive accuracy and bias are not the only important 

aspects for real-world use of the modeling techniques. Thus we also compare them on a set of 

qualitative aspects. Below we describe both of these types of evaluation. 

5.1. Quantitative evaluation 

On the quantitative front, we test the models' results for goodness of fit, predictive accuracy 

and model bias. A goodness of fit test measures the difference between the observed and the 

fitted values after a model is fitted to the training data. We are interested here to test whether the 

two samples (actual fault count data from the testing set and the predicted fault count data from 



 

each technique) belong to identical distributions. Therefore, the Kolmogorov-Smirnov (K-S) test 

is applied which is a commonly used statistical test for measuring goodness of fit (Stringfellow 

and Andrews, 2002; Matsumoto, Inoue, Kikuno & Torii, 1988). The K-S test is distribution free, 

which suited the samples as they failed the normality tests. Since goodness of fit tests do not 

measure predictive accuracy per se, we use prequential likelihood ratio (PLR), absolute average 

error (AAE) and absolute relative error (ARE) and prediction at level l (pred (l)) as the measures 

for evaluating predictive accuracy. Specifically, PLR provides a measure for short-term 

predictability (or next-step predictability) while AAE and ARE provides measures for variable-

term predictability (Taghi, Naeem & Nandini, 2006; Malaiya, Karunanithi & Verma, 1990). We 

further test a particular model's bias, which gives an indication of whether the model is prone to 

overestimation or underestimation (Malaiya et al., 1990). To measure a particular model's bias, 

we examine the distribution of residuals to compare models as suggested in (Kitchenham, 

Pickard, MacDonell & Shepperd, 2001; Lesley, Barbara & Susan, 1999). We also formally test 

for significant differences between competing prediction systems as recommended in e.g. 

(Shepperd et al, 2000). In the following we describe the evaluation measures in more detail. 

Kolmogorov-Smirnov (K-S) test. The K-S test is a distribution-free test for measuring 

general differences in two populations. The statistic J for the two-sample two-sided K-S test is 

given by, 
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In our case, the two samples were, i) the training part of the actual fault count data and ii) the 



 

actual predictions from the technique under test. For detailed description of the test, see 

(Hollander and Wolfe, 1999). 

Prequential likelihood ratio (PLR). PLR is used to investigate the relative plausibility of 

the predictions from two models (Abdel-Ghaly, Chan & Littlewood, 1986). The prequential 

likelihood (PL) is the measure of closeness of a model's probability density function to the true 

probability density function. It is defined as the running product of one-step ahead predictions 
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In our case, we select the actual time distribution of fault count data as a reference and 

conduct pair-wise comparisons of all other models' predictions against it. Then the model with 

the relatively smallest prequential likelihood ratio can be expected to provide the most trust 

worthy predictions. For further details on PLR, see (Sarah and Bev, 1996). 

Absolute average error (AAE). The AAE is given by, 
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Absolute relative error (ARE). The ARE is given by, 
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Prediction at level l. The Prediction at level l, pred(l), represents a measure of the number 

of predictions within l% of the actuals. We have used the standard criterion for considering a 

model as acceptable which is pred(0.25) ≥ 0.75 which means that at least 75% of the estimates 

are within the range of 25% of the actual values (Jos and Javier, 2000). 

Distribution of residuals. To measure a particular model bias, we examine the distribution 

of residuals to compare models (Kitchenham et al., 2001; Shepperd et al., 2000). It has the 

convenience of applying significance tests and visualizing differences in absolute residuals of 

competing models using box plots. 

5.2. Qualitative evaluation 

In addition to the quantitative evaluation factors, there are other qualitative criteria, which 

need to be accounted for when assessing the usefulness of a particular modeling technique. 

Qualitative criterion-based evaluation evaluates each method based on conceptual requirements 

(Gray and MacDonell, 1997). One or more of these requirements might influence model 

selection. We use the following qualitative criteria (Gray and MacDonell, 1997; Carolyn et al. 

2000; Michael & Allen, 1992; Burgess and Lefley, 2001), which we believe are important factors 

influencing model selection: 



 

1. Configurability (ease of configuration), i.e. how easy is it to configure the 

technique used for modeling? 

2. Transparency of the solution (explanatory value regarding output), i.e. do the 

models explain the output? 

3. Generality (applicability in varying operational environments), i.e. what is the 

extent of generality of model results for diverse data sets? 

4. Complexity, i.e. how complex are the resulting models? 

6. Software fault prediction techniques 

This section describes the techniques used in this study for software fault prediction. The 

techniques include genetic programming (GP), artificial neural networks (ANN), support vector 

machine regression (SVM), Goel-Okumoto non-homogeneous Poisson process model (GO), 

Yamada's S-shaped growth model (YAM) and Brooks and Motley's Poisson model (BMP). We 

have used GPLAB version 3 (Silva, 2007) (for running GP), Weka software version 3.4.13 

(Witten & Frank, 2005) (for running ANN, SVM and LR) and SMERFS3 version 2 (Farr, 2009) 

(for running GO, YAM and BMP). 

6.1. Genetic programming (GP) 

GP is an evolutionary computation technique and is an extension of genetic algorithms 

(Koza, 1992). The population structures (individuals) in GP are not fixed length character 

strings, but programs that, when executed, are the candidate solutions to the problem. For the 

symbolic regression application of GP, programs are expressed as syntax trees, with the nodes 

indicating the instructions to execute and are called functions (e.g. min, *, +, /), while the tree 

leaves are called terminals which may consist of independent variables of the problem and 

random constants (e.g. x, y, 3). The worth of an individual GP program in solving the problem is 



 

assessed using a fitness evaluation. The fitness evaluation of a particular individual in this case is 

determined by the correctness of the output produced for all of the fitness cases (Bäck, Fogel & 

Michalewicz, 2000). The control parameters limit and control how the search is performed like 

setting the population size and probabilities of performing the genetic operations. The 

termination criterion specifies the ending condition for the GP run and typically includes a 

maximum number of generations (Burke and Kendall, 2005). GP iteratively transforms a 

population of computer programs into a new generation of programs using various genetic 

operators. Typical operators include crossover, mutation and reproduction. Crossover takes place 

between two parent trees with swapping branches at randomly chosen nodes, while in tree 

mutation a random node within the parent tree is substituted with a new random tree created with 

the available terminals and functions. Reproduction causes a proportion of trees to be copied to 

the next generation without any genetic operation (Silva, 2007). 

Initially we experimented with a minimal set of functions and the terminal set containing 

the independent variable only. We incrementally increased the function set with additional 

functions and later on also complemented the terminal set with a random constant. For each data 

set, the best model having the best fitness was chosen from all the runs of the GP system with 

different variations of function and terminal sets. The GP programs were evaluated according to 

the sum of absolute differences between the obtained and expected results in all fitness cases, 
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Table 2. GP control parameters. 



 

 

The control parameters that were chosen for the GP system are shown in Table 2. The 

selection method used is lexictour in which the best individuals are selected from a random 

number of individuals. If two individuals are equally fit, the tree with fewer nodes is chosen as 

the best (Silva, 2007). For a new population, the parents and off springs are prioritized for 

survival according to elitism. The elitism level specifies the members of the new population, to 

be selected from the current population and the newly generated individuals. The elitism level 

used in this study is replace in which children replace the parent population having received 

higher priority of survival, even if they are worse than their parents (Silva, 2007).  

6.2. Artificial neural networks (ANN) 

The development of artificial neural networks is inspired by the interconnections of 

biological neurons (Russell and Norvig, 2003). These neurons, also called nodes or units, are 

connected by direct links. These links are associated with numeric weights, which show both the 

strength and sign of the connection (Russell and Norvig, 2003). Each neuron computes the 

weighted sum of its input, applies an activation (step or transfer) function to this sum and 

generates output, which is passed on to other neurons. 

A neural network structure can be feed-forward (acyclic) network and recurrent (cyclic) 

network. Feed-forward neural networks do not contain any cycles and a network's output is only 

dependent on the current input instance (Witten & Frank, 2005). Recurrent neural networks feeds 



 

its output back into its own inputs, supporting short-term memory. Feed-forward neural network 

are more common and may consist of three layers: Input, hidden and output. The feed-forward 

neural network having one or more hidden layers is called multilayer feed-forward neural 

networks. Back-propagation is the common method used for learning the multilayer feed-

forward neural network whereby the error from the output layer back-propagates to the hidden 

layer. The ANN models for this study were obtained using multilayer feed-forward neural 

networks containing one input layer, one hidden layer and one output layer. The multilayer 

perceptron implemented in Weka software version 3.4.13 was used for training. The output layer 

had one node with linear transfer function and the two nodes in the hidden layer had sigmoid 

transfer function. 

6.3. Support vector machine (SVM) 

Support vector regression uses support vector machine algorithm for numeric prediction. 

Support vector machine algorithms classify data points by finding an optimal linear separator 

which possess the largest margin between it and the one set of data points on one side and the 

other set of examples on the other. The largest separator is found by solving a quadratic 

programming optimization problem. The data points closest to the separator are called support 

vectors (Russell and Norvig, 2003). For regression, the basic idea is to discard the deviations up 

to a user specified parameter ε (Witten & Frank, 2005). Apart from specifying ε, the upper limit 

C on the absolute value of the weights associated with each data point has to be enforced (known 

as capacity control). The support vector regression implemented in Weka software version 3.4.13 

was used for training which uses Smola and Scholkopf sequential minimization algorithm (Smola 

and Schölkopf, 2004) for training. More details on support vector regression can be found in 

(Smola and Schölkopf, 2004; Gunn 1998).  



 

6.4. Linear regression (LR) 

The linear regression used in the study performs a standard least-squares linear regression 

(Kachigan, 1982). Simple linear regression helps to find a relationship between the independent 

(x) and dependent (y) variables. It also allows for prediction of dependent variable values given 

values of the independent variable. The general form of a simple linear regression is, 

y=∝+βx         (6) 

where ∝ (y-intercept) and β (slope) are unknown and are estimated from data. 

6.5. Traditional software reliability growth models 

As discussed in Section 1, we use three traditional software reliability growth models for 

comparisons. Below is a brief summary of these models while further details, regarding e.g. the 

models' assumptions, can be found in (Goel and Okumoto, 1979; Brooks and Motley, 1980; 

Yamada and Osaki, 1983). 

The Goel-Okumoto non-homogeneous Poisson process model (GO) (Goel and Okumoto, 

1979) is given by, 

m(t) = a [1 - e-bt]        (7) 

while Yamada's S-shaped growth model (YAM) (Yamada and Osaki, 1983) is also a non-

homogeneous Poisson process model given by, 

m(t) = a (1- (1+bt) e-bt)       (8) 

where in both above equations a is the expected total number of faults before testing, b is 

the failure detection rate and m(t) is the expected number of faults detected by time t, also called 

as the mean value function. In the above two models, the failure arrival process is viewed as a 

stochastic non-homogeneous Poisson process (NHPP), with the number of failures X(t) for a 

given time interval (0,t) given by the probability P[X(t) = n as (Jeff, 1996): 
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Brooks and Motley's model come in two variations, depending upon the assumption of 

either a Poisson or a binomial distribution of failure observations. We make use of the Poisson 

model. Specifically, Brooks and Motley's Poisson model (BMP) (Brooks and Motley, 1980) with 

Poisson distribution of failure observations ni over all possible X for i-th period of length ti gives 

the probability P[X=ni] of number of failures for a given time interval, 
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where Ni is the estimated number of defects at the beginning of i-th period and 

! 

"  is Poisson 

constant. 

7. Experiment and results 

We have collected data from a total of seven multi-release open source and industrial software 

projects for the purpose of cross-release prediction of fault count data. The data sets have been 

impartially split in to training and test sets. The training set is used to build the models while the 

independent (hold-out) test set is used to evaluate the models' performance. The training and test 

data sets are given in Table 1. For all our data sets, we had the complete data set available 

upfront because they were based on projects having a historical pool of data. Therefore we were 

required to select a split mechanism that was impartial and also preserve the time-series nature of 

data. A generally accepted practice for data mining algorithms is to hold out one-third of the data 

for testing and use the remaining two-thirds for training (Witten & Frank, 2005), however, owing 

to the cross-release nature of this study, we resorted to a training set comprising of fault data 

from previous releases of the software under consideration while the testing set was comprised of 

fault data from the forthcoming release. 



 

The performance is assessed both quantitatively (goodness of fit, predictive accuracy, 

model bias) and qualitatively (ease of configuration, solution transparency, generality and 

complexity). The independent variable in our case is the week number while the corresponding 

dependent variable is the count of faults. Week number is taken as the independent variable 

because it is controllable and potentially has an effect on the dependent variable, i.e. the count of 

faults, in which the effect of the treatment is measured. All our data sets were uni-variate, which 

suited the cross-release nature of this study since collecting multivariate data across releases is 

quite difficult and also would have severely complicated the cross-release modeling. The design 

type of our experiment is one factor with more than two treatments (Box, Hunter & Hunter, 

1978). The factor is the prediction of fault count data while the treatments are the application of 

GP, traditional approaches and the machine learning approaches. In this section, we further 

present the results of goodness of fit, predictive accuracy, model bias and qualitative evaluation 

for different techniques applied to the different data sets in the study. 

7.1. Evaluation of goodness of fit 

We make use of K-S test statistic to test whether the two samples (in this case, the 

predicted and actual fault count data from the test set part of the data set for each technique) have 

the same probability distribution and hence represent the same population. The null hypothesis 

here is that the predicted and the actual fault count data have the same probability distribution 

(Hollander and Wolfe, 1999) i.e., 

H0 : [F(t) = G(t), for every t]      (11) 

At significance level ∝ = 0.05, if the K-S statistic J is greater than or equal to the critical 

value J∝, the null hypothesis (Eq. 11) is rejected in favor of the alternate hypothesis, i.e. that the 

two samples do not have the same probability distribution. 



 

 

Table 3. Results of applying Kolmogorov-Smirnov test. The bold values indicate J < J∝, 

(--) indicates lack of model convergence, J∝ is the critical J value at ∝=0.05. 

 

Table 3 shows the results of applying K-S test statistic for each technique for every data 

set. The (--) in the Table 3 indicates that the algorithm was not able to converge for the particular 

data set. The instances where the K-S statistic J is less than the critical value J∝ are shown in 

bold in Table 3. It is evident from Table 3 that GP was able to show statistically significant 

goodness of fit for the maximum number of data sets (i.e. five). The other close competitors were 

ANN (4), LR (4), YAM (4) and BMP (4). This indicates that, at significance level ∝ = 0.05, GP 

is better in terms of having statistically significant goodness of fit on more data sets than other, 

competing, techniques. 

 

Table 4. Summary statistics for K-S test showing the mean, median, min and max 

corresponding to the respective number of data sets. 



 

 

Table 4 shows the summary of K-S test statistic for all the techniques. Since some 

techniques did not converge for some data sets, the number of data sets applicable for techniques 

is different. GP, ANN, LR and BMP were able to converge for all seven data sets. However, the 

same did not happen with other techniques, as can be seen from the second column of Table 4. 

We can observe that in comparison with ANN, LR and BMP with seven data sets each, GP 

appears to be a better technique (shows a comparatively closer fit to the set of observations) 

when ranked based on mean and median. 

We conclude that the goodness of fit of GP models for cross-release predictions is 

promising in comparison with traditional and machine learning models as they were able to show 

better goodness of fit, both in terms of K-S test statistic and ranking based on mean and median, 

on more data sets. 

7.2. Evaluation of predictive accuracy 

 

Table 5. log(PLR}) values for one-step-ahead predictions. The values shown are the final 

log result of the running product of ratio of the successive on-step ahead predictions of 

actual fault count and other models' predictions. Values closer to 0 are better. 



 

 

Table 5 shows the final log result of the running product of the ratio of the successive one-

step ahead predictions of actual fault count data and other techniques' prediction. Since the actual 

time distribution of weekly/monthly fault count data is chosen as the reference, the PLR values 

closer to 0 are better. We observe from Table 5 that the log(PLR) values are closest to 0 on four 

occasions for GP while thrice for LR. The winner from each data set is shown in bold in Table 5. 

This shows that for most data sets (four out of seven), the probability density function of the GP 

model is closer to the true probability density function. 

  

Figure 2. log(PLR) plots for the data sets OSStom, OSSbsd, OSSmoz, IND01, IND02, 

IND03 and IND04. 



 

 

Figure 2 depicts the PLR analysis for all the data sets which shows the pair wise 

comparisons of each technique with the actual weekly/monthly fault count data which has been 

chosen as the reference model (indicated as a dotted straight line in the plots of Figure 2). We see 

that for OSStom (Figure 2a), the prediction curves for LR and SVM are closer to the reference in 



 

comparison with other curves. For OSSbsd (Figure 2b), the prediction curve for GP follows the 

reference more closely than other curves. Same behavior is also evident for IND01, IND03 and 

IND04 (Figures 2d, 2e and 2g). However, for OSSmoz (Figure 2c), YAM is better at following 

the reference compared to any other curve, while for IND03 (Figure 2f), the curves for GP, ANN 

and LR are much closer to the log(PLR) of actual fault count data. Overall, GP was able to show 

more consistent predictive accuracy, across four of the seven data sets. 

 

Table 6. AAE values for different techniques for all data sets. The bold values indicate 

the lowest AAE values from each data set. (--) indicates lack of model convergence. 

 

Table 6 shows the computed values of AAE for all the data sets. The lowest AAE values 

from each data set are shown in bold. GP gave the lowest AAE values for the maximum number 

of data sets (data sets OSStom, OSSbsd, IND01, IND03 and IND04), followed by LR, which 

remained successful in case of data sets IND02, and IND03.  

Since the AAE samples from different methods did not satisfy the normality assumption, 

we used the non-parametric Wilcoxon rank sum test to test the null hypothesis that data from two 

samples have equal means. We tested for following pairs of AAE samples: GP vs. ANN, GP vs. 

SVM, GP vs. LR, GP vs. YAM and GP vs. BMP. The corresponding p-values for these tests 

came out to be 0.27, 0.02, 0.13, 0.03 and 0.22 respectively. At significance level of 0.05, the 

result indicated that the null hypothesis is rejected for GP vs. SVM and GP vs. YAM, while 



 

showing that there is no statistically significant difference between the AAE means of GP, ANN, 

LR and BMP at the 0.05 significance level. 

 

Table 7. Summary statistics for AAE showing the mean, median, min and max 

corresponding to the respective number of data sets. 

 

Apart from statistical testing, Table 7 presents the summary statistics of AAE for all the 

techniques. We can observe that having a ranking based on median, GP has the lowest value in 

comparison with ANN, LR and BMP having 7 data sets each. For a ranking based on mean, GP 

appears to be very close to the best mean AAE value for BMP, which is 12.05. 

  

Table 8. ARE values for different techniques for all data sets. Bold values indicate the 

lowest ARE values from each data set. (--) indicates lack of model convergence. 

 



 

Table 8 shows the computed values of ARE for all the data sets. It is evident from the 

Table that GP resulted in the lowest ARE values for most of the data sets (five out of seven). The 

other closest technique was LR that was able to produce lowest ARE values for two data sets. 

This shows that GP is generally a better approach for variable-term predictability. 

As with AAE, ARE samples from different methods also did not satisfy the normality 

assumption. We used the non-parametric Wilcoxon rank sum test for testing the following pairs 

of ARE samples: GP vs. ANN, GP vs. SVM, GP vs. LR, GP vs. YAM and GP vs. BMP. The 

corresponding p-values for these tests came out to be 0.18, 0.07, 0.15, 0.29 and 0.17 respectively. 

This shows that, for significance level of 0.05, there is no statistical difference between the ARE 

means of GP, ANN, SVM, LR, YAM and BMP. 

 

Table 9. Summary statistics for ARE showing the mean, median, min and max 

corresponding to the respective number of data sets. 

 

Apart from statistical testing, we can observe from Table 9 that having a ranking based on 

both mean and median; GP has the lowest value in comparison with ANN, LR and BMP having 

7 data sets each. 

 



 

Table 10. Pred(0.25) calculation for different techniques for all data sets. (--) 

shows lack of model convergence. 

 

 

We further applied the measure of pred(l) to judge on the predictive ability of the 

prediction systems. The result of applying pred (l) is shown in Table 10. The standard criterion 

of pred (0.25) ≥ 75 for stable model predictions was met by different techniques for different 

data sets but GP and BMP were able to meet this criterion on most data sets i.e. five. The 

application of these two techniques on the five data sets resulted in having 100% of the estimates 

within the range of 25% of the actual values. 

We conclude that while the statistical tests for AAE and ARE do not give us a clear 

indication of a particular technique being (statistically) significantly better compared to other 

techniques, the summary statistics (Tables 7 and 9) together with the evaluation of pred(0.25) 

and PLR show that the predictive accuracy of GP for cross-release prediction of fault count data 

is promising in comparison with other techniques. 

7.3. Evaluation of model bias 

 

 Figure 3. Charts showing Box plots of residuals for the seven data sets. 



 

 

We examined the bias in predictions by making use of box plots of model residuals. The 

box plots of residuals for all the data sets are shown in Figure 3. For OSSbsd (Figure 3b) and 

IND04 (Figure 3g), the box plot of GP show two important characteristics: 



 

1. Smaller or equivalent length of the box plot as compared with other box 

plots. 

2. Presence of majority of the residuals close to 0 as compared with other 

box plots. 

For IND03 (Figure 3f), the length of the box plot and its proximity close to 0 appear to be 

similar for GP, ANN and LR. For OSStom (Figure 3a), SVM and LR are better placed than rest 

of the techniques while for OSSmoz (Figure 3c), YAM appears to be having a smaller box plot 

positioned in the proximity of 0. For IND01, although the length of the box plot seems to be 

small for ANN, it still appears below the 0-mark indicating that the predictions from ANN are 

overestimating the actual fault count data. The GP box plot, however, appears to be better 

positioned in this respect. The same is the case with IND02 (Figure 3e) where GP and LR show a 

good trade-off between length and actual position of the box plot. 

 

Table 11. Kruskal-Wallis statistic h for different data sets for testing difference in 

residuals. ν is the degrees of freedom. 

 



 

Since the box plots of the residuals were skewed, we resorted to using the non-parametric 

Kruskal-Wallis test to examine if there is a statistical difference between the residuals for all the 

data sets and to confirm the trend observed from the box plots. The results of the application of 

the Kruskal-Wallis test appear in Table 11. For each of the data sets, the Kruskal-Wallis statistic 

h is greater than the critical value χ2
0.05. Therefore, we had sufficient evidence to reject the null 

hypothesis that the residuals for different techniques within a project were similar. 

 

Table 12. p-values after applying the Wilcoxon rank sum test on residuals (values 

rounded to two decimal places). Values in bold indicate p > 0.05. 

 

In order to further investigate if the residuals obtained from GP are different from those of 

other techniques, we used the Wilcoxon rank sum test. The p-values obtained are shown in Table 

12. The table shows that except for four cases, the p-values were found to be less than 0.05, 

which rejects the null hypothesis that the samples are drawn from identical continuous 

distributions. The four cases where the null hypothesis was not rejected coincide with data sets 

OSSbsd and IND02, where the comparisons of the residuals of GP were not found to be different 

from those of ANN, SVM and LR. (These cases are shown in bold in Table 12.) 

We conclude that in terms of model bias, the examination of residuals show the greater 

consistency of GP as compared with other traditional and machine learning models in having 

predictions that result in smaller box plots that are positioned near the 0-mark. Further, 



 

application of the Wilcoxon rank sum test shows that except for four combinations (GP:ANN-

OSSbsd, GP:SVM-IND02, GP:LR-IND02, GP:ANN-IND02), there is sufficient evidence to 

show that the residuals from GP are different from those of other competing techniques. 

7.4. Qualitative evaluation of models 

The selection of a particular model for fault count predictions is influenced not only by the 

quantitative factors (e.g. goodness of fit, predictive accuracy and bias) but also by certain 

conceptual requirements, which we term as qualitative measures. We believe that it is important 

to take into account these qualitative measures (in addition to quantitative ones) to reach an 

informed decision about a suitable technique or combination of techniques to use for fault count 

predictions. 

Ease of configuration. The parametric models including BMP, GO, YAM and linear 

regression require an estimation of certain parameters. The number of these parameters and the 

ease with which these parameters can be measured affects measurement cost (Michael & Allen, 

1992). With automated reliability measurement using tools such as CASRE (Computer-Aided 

Software Reliability Estimation) and SMERFS (Statistical Modeling and Estimation of 

Reliability Functions for Systems) (Farr, 2009; Nikora, 2009), the estimation of parameters may 

have eased but such tools are limited by the number of supported models and numerical 

approximation methods. Linear regression, in comparison, is much simpler to use having several 

tools available for automation. 

For the machine learning methods used in this study, the ease of configuration concerns 

setting algorithmic control parameters. For ANN, some initial experimentation is required to 

reach a suitable configuration of number of layers and associated number of neurons. For GP, 

there are several parameters that control the adaptive evaluation of fitter solutions, such as 



 

selection of function and terminal sets and probabilities of genetic operators. For SVM, one 

needs to take care of capacity control and the loss function. But once these algorithmic control 

parameters are set, an approximation is found by these methods during training. However, there 

seems to be no clear differentiation among different techniques with respect to ease of 

configuration. This is in our opinion a general problem and indicates a need for further research. 

Transparency of the solution. The resulting equations for traditional models are partially 

transparent however; GP is capable of producing transparent solutions because the resulting 

model is an algebraic expression (which is not the case with ANN and SVM). Thus, transparency 

of solutions is one distinct advantage of using GP. Transparency of the solutions “can be 

important for the purpose of verification as well as theory building and gaining an understanding 

of the process being modeled” (Gray and MacDonell, 1997, pp. 435). In our case, with one 

independent variable (week number) and one dependent variable (count of faults), typical GP 

solutions are of the form below: 

times(minus(sin(minus(cos(x),x)),minus(log(cos(log(sin(log(x))))),sin(x))),log(x)) (12) 

where x is the independent variable and minus, times, sin, cos, log represents the function 

set (as outlined in Table 2). While eq. 12 is transparent, it is still difficult to explain the 

relationship between the independent and dependent variables. Therefore, simplification of 

resulting GP solutions is important which has to do with finding solutions with less nodes to 

make the results understandable analytically. 

Generality. The extent of generality of model results for diverse data sets is better for 

machine learning and evolutionary methods than the traditional methods. This is because of the 

fact that machine learning and evolutionary models do not depend on prior assumptions about 

data distribution and form of relationship between independent and dependent variables. The 



 

model and the associated coefficients are evolved based on the fault data collected during the 

initial test phase. In this sense, the applicability of the models derived from machine learning and 

evolutionary methods for different development and operational environments and life-cycle 

phases, appear to be better suited than traditional modeling techniques. 

Complexity. The complexity criterion is especially important to discuss with respect to GP 

since GP has the potential of evolving transparent solutions. However the solutions can become 

complex as the number of nodes in the GP solution increases (as in Eq. 12), a phenomenon 

known as bloating. Although there are different ways to control this (see e.g. Sean and Liviu, 

2006), in the context of canonical GP, this is still an important consideration. For ANN, the 

complexity can be connected to the potential complex and inefficient structures that can evolve 

in an attempt to discover difficult data patterns. For SVM and traditional software reliability 

growth models, being essentially black box, the complexity is difficult to discuss. However, for 

linear regression, where the reasoning process is partially visible, the complexity is apparently 

minimal. 

There can be another way to evaluate complexity in terms of suitability of a technique to 

incorporate complex models. This can be connected back to the theory of whether the modeling 

technique determines its own structure or requires the engineer to provide the structure of the 

relationship between independent and dependent variables (Gray and MacDonell, 1997). The 

machine learning and evolutionary models certainly scores high in this respect in comparison 

with traditional methods. 

8. Validity evaluation 

 There can be different threats to the validity of the empirical results (Claes et al., 2000).  



 

Conclusion validity, refers to the statistically significant relationship between the treatment 

and outcome. We have used non-parametric statistics in this study, particularly Kolmogorov-

Smirnov goodness of fit test, Kruskal-Wallis statistic and Wilcoxon rank sum test. Although the 

power of parametric tests is known to be higher than for non-parametric tests, we were uncertain 

about the corresponding parametric alternatives meeting the tests' assumptions. Secondly, we 

used a significance level of 0.05, which is a commonly used significance level for hypothesis 

testing (Juristo and Moreno, 2001); however, facing some criticism lately (Ioannidis, 2005). 

Therefore, it can be considered as a limitation of our study and a potential threat to conclusion 

validity. One potential threat to conclusion validity could have been that the fitness evaluation 

used for GP (Subsection 6.1) is similar to the quantitative evaluation measures for comparing 

different techniques (Subsection 5.1). This is, however, not the case with this study since the GP 

fitness function differs from the quantitative evaluation measures and also we have used a variety 

of different quantitative evaluation measures not necessarily based on minimization of standard 

error. A potential threat to conclusion validity is that the fault count data sets did not consider the 

severity level of faults, rather treated all faults equally. This is a limitation of our study and we 

acknowledge that by considering severity levels, the conclusion validity of the study would have 

improved; but at the same time we are also apprehensive that subjective bias might result in 

wrong assignment of severity levels. Another potential threat to conclusion validity is the 

different lengths of training and test data sets, depending upon the fault counts from respective 

releases. We were not sure if this is an influential factor in our study. We plan to investigate this 

in the future. A similar threat is the data set size available for training and subsequently testing 

the models. This is our limitation that the actual fault counts of different releases determined the 

data set size that varied across different software. 



 

Internal validity, refers to a causal relationship between treatment (independent variable) 

and outcome (dependent variable). It concerns all the factors that are required for a well-

designed study. As for the selection of different data sets, we opted for having data sets from 

varying domains. Moreover, for each data set, we used a consistent scheme of impartially 

splitting the data set into testing and training sets for all the techniques. A possible threat to 

internal validity is that we cannot publicize our industrial data sets due to proprietary concerns; 

therefore other researchers cannot make use of these data sets. However, we encourage other 

researchers to emulate our results using other publicly available data sets. The best we could do 

is to clearly state our research design and apply recommended approaches like statistical 

hypothesis testing to minimize the chances of unknown bias. Also, the different techniques were 

applied over different data sets in approximate standard parameter settings. For the GP algorithm 

there are no standard setting for the function and terminal sets so we had to test a few different 

ones, while keeping other parameters constant, until some search success was seen. Even though 

this is standard practice when using GP systems, a potential threat is that it could bias the results. 

The used data sets were grouped on a weekly or monthly basis. One reason for this is that 

one of the industrial data sets was only available at this level of detail. While some studies (e.g. 

Wood, 1996) have indicated that the grouping of data is not a threat, it is possible that more 

detailed and frequent date and time resolution, and thus prediction intervals, could affect the 

applicability of different modeling techniques. For example, linear regression models might have 

a relative advantage for data that is more regular, with less frequent changes. However, it is hard 

to predict such effects and without further study we cannot determine if it is really a threat. 

Construct validity, is concerned with the relationship between the theory and application. 

We attempted to present both quantitative and qualitative evaluation factors in the study for 



 

defining the different constructs. There is a threat that we might have missed one or more 

evaluation criteria; however the evaluation measures used in the study reflect the ones commonly 

used for evaluating prediction models. 

 

External validity, is concerned with generalization of results outside the scope of the study. 

We used data sets from both open source and commercial software projects that we believe adds 

to the generalizability of the study. Also the data sets cannot be regarded as toy problems as each 

one of them represented real-life fault data from multiple software releases. One threat to 

external validity is the selection of machine learning algorithms for comparison. Being a large 

field of research, new data mining algorithms are continuously being proposed. We used a small 

subset of the machine learning algorithms but we are confident that our subset is a representative 

one, being based on techniques which have different modeling mechanism and are currently 

active fields of research. 

9. Discussion and conclusions 

In this paper, we compared the cross-release predictions of fault count data from models 

evolved using GP with common machine learning and traditional models. The comparisons were 

based on measures of goodness of fit, predictive accuracy and model bias. We also presented an 

analysis of some of the conceptual requirements for a successful model (including ease of 

configuration, transparency of solution, generality and complexity). These conceptual 

requirements are important when considering the applicability of a prediction system (Carolyn et 

al. 2000) and should be taken into account along with the quantitative performance. 

The results of K-S test statistic showed statistically significant goodness of fit for the GP-

evolved models for the majority of the data sets. The predictive accuracy of the competing 



 

models was assessed using PLR, AAE, ARE and pred (l). Using PLR, GP-evolved models 

showed consistently better predictive accuracy across four of the seven data sets. For the 

measure of AAE and ARE, GP models were able to give the respective lowest values for largest 

number of data sets. Finally, GP models were able to meet the standard criterion of pred (0.25) ≥ 

75 for stable model predictions for the most number of data sets (compared to other techniques). 

This observation regarding the accuracy of GP predictions is in agreement with Arthur (2006) 

where the GP models performed with acceptable quality within 20% outside the training data 

range. We also assessed the model bias of competing techniques using distribution of residuals, 

and in that analysis GP models showed a tendency of having less biased predictions as compared 

with other traditional and machine learning approaches. In terms of conceptual requirements, 

though ease of configuration might not be the favorable aspect of GP models, the transparency of 

solution and generality are factors that add further value to the quantitative potential of GP-

evolved models. 

The fact that no prior assumptions have to be made in terms of actual model form is a 

distinct advantage of machine learning approaches over linear regression and traditional models. 

The traditional techniques need to satisfy the underlying assumptions, which means that there is 

no assurance that these techniques would converge to a solution. This does not happen with GP 

and ANN machine learning techniques. This shows that the machine learning techniques tend to 

be more flexible than its traditional counterparts. This flexibility also contributes to the greater 

generalizability of machine learning models in a greater variety of software projects. GP offers 

flexibility by adjusting a variety of functions to the data points; thereby both structure and 

complexity of the model evolve during subsequent generations. 



 

Considering the different trade-offs among competing models, it appears crucial to define 

the success criterion for an empirical modeling effort. Such a definition of success would help 

exploit the unique capabilities of different modeling techniques. For instance, if success is 

defined in terms of having only accurate predictions without the need of examining the 

relationship among variables in the form of a function, then artificial neural networks (ANN) 

might be a worthy candidate for selection (being known as universal approximators), provided 

that the requisite levels of model accuracy are satisfied. But selecting ANN as a modeling 

technique would mean that we have to be aware of its potential drawbacks: 

1. Less flexible as the neural nets cannot be manipulated once the learning phase 

finishes (Dolado, Fernandez, Otero & Urkola, 1999). This means that neural 

networks require frequent retraining once specific process conditions change and 

hence adds to the maintenance overhead. 

2. Black-box approach, thus disadvantageous for experts who want to have an 

understanding and potential manipulation of variable interactions. 

3. Possibility of having inefficient and non-parsimonious5 structures. 

4. Potentially poor generalizability outside the range of the training data (Kordon, 

Smits, Jordaan & Rightor, 2002). 

In contrast, GP possesses certain unique characteristics considering the above issues. 

Symbolic regression using GP is flexible because of its ability to adjust variety of functions to 

the data points and the models returned by symbolic regression are open for interpretation. This 

also helps to identify significant variables, which in the longer run could be used in subsequent 

modeling to increase the efficiency of the modeling effort (Kotanchek, Smits & Kordon, 2003). 



 

This might also be useful for an easy integration in existing industrial work processes whereby 

only those variables could be used. 

 

Table 13. Summary of the relative strengths of the methods on different criteria; 

techniques are ranked according to the relative performance for maximum number of times on all 

the data sets. 

 

A brief summary of the relative performance of different techniques is presented in Table 

13. The performance indicators are given as to summarize the detailed evaluation done in the 

study based on several measures (Section 5). The indicators (++, +, 0, -, - -) for the quantitative 

measures of goodness of fit, accuracy and model bias represent the relative performance of 

different techniques for largest number of times on different data sets, e.g. GP is ranked (++) on 

accuracy because of performing comparatively better on accuracy measures for greater number 

of data sets. The indicators for the qualitative measures represent the relative merits of the 

techniques as discussed in Subsection 7.4. Table 13 shows that GP has the advantage of having 

better goodness of fit and accuracy as compared to other techniques, even though no special 

adaptions were made to the canonical GP algorithm taking into account the time series nature of 

the data (GP and ANN are expected to perform better for time series prediction if there is a 

                                                                                                                                                       
5 The parsimonious factor takes into account that the model with the smallest number of 
parameters is usually the best. 



 

possibility to save state information between different steps of prediction which can be used to 

identify trends in the input data; however, we wanted to compare the performance for standard 

algorithms and any enhancements to these techniques is not addressed in this study). Table 13 

shows that the GP models also exhibit less model bias. On the other hand, the ease of 

configuration and complexity are not necessarily stronger points for GP models. It is interesting 

to observe that ANN does not perform as well as expected in terms of goodness of fit and 

accuracy. Linear regression was able to show normal predictions in terms of goodness of fit and 

accuracy but scores higher on ease of configuration; they however lack generality due to the 

need of satisfying underlying assumptions. SVM and the traditional models (GO, YAM, BMP) 

appear to have similar advantages and disadvantages, with YAM showing a slightly improved 

quantitative performance, while SVM possesses better generality across different data sets. 

The most encouraging result of this study shows the feasibility of using GP as a 

prediction tool across different releases of software. This indicates that the development team 

can use GP to make important decisions related to the quality of their deliverables. GP models 

also showed a decent ability to adapt to different time spans of releases (on the basis of the 

different lengths of the testing sets for different data sets); which is also a positive indicator. It 

shows that GP is least affected by moderate differences in the release durations and can predict 

decently with variable time units into future. Additionally, having evaluated the performance on 

diverse data sets from different application domains shows the flexibility of GP, i.e. suits a 

variety of data sets.  

In short, the use of GP can lead to improved predictions with the additional capabilities of 

solution transparency and generality across varying operational environments. Secondly the GP 

technique used in this paper followed a standard\slash canonical approach. Several adaptations to 



 

the GP algorithm (e.g. Pareto GP and grammar-guided GP) can potentially lead to further 

improved GP search process. We intend to investigate this in the future. Another future work 

involves evaluating the use of GP in an on-going project in an industrial context and to compare 

the relative short-term and long-term predictive strength of the GP-evolved models for different 

lengths of training data. Lastly, evaluation of ensemble methods presents another opportunity for 

future research. 

References 

Abdel-Ghaly, A. A., Chan, P. Y., & Littlewood, B. (1986). Evaluation of competing software reliability 

predictions. IEEE Trans. Softw. Eng., 12(9), 950-967. 

Adnan, W. A., Yaakob, M., Anas, R., & Tamjis, M. R. (2000). Artificial neural network for software 

reliability assessment. Paper presented at the Proceedings of TENCON 2000.  

Afzal, W., Torkar, R., & Feldt, R. (2008). Prediction of fault count data using genetic programming. 

Paper presented at the proceedings of INMIC 2008 IEEE International Multitopic Conference.  

Aljahdali, S. H., Sheta, A., & Rine, D. (2001). Prediction of software reliability: A comparison between 

regression and neural network non-parametric models. Paper presented at the proceedings of 

ACS/IEEE International Conference on Computer Systems and Applications, 2001. 

Arthur, K. (2006). Evolutionary computation at Dow Chemical. SIGEVOlution, 1(3), 4-9. 

Arthur Karl, K., Guido, F. S., & Mark, E. K. (2007). Industrial evolutionary computing. Paper presented 

at the Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary 

computation.  

Bäck, T., Fogel, D. B., & Michalewicz, Z. (2000). Evolutionary computation 1–Basic algorithms and 

operators: Taylor & Francis Group. 

Barry, B., & Victor, R. B. (2001). Software Defect Reduction Top 10 List. Computer, 34(1), 135-137. 



 

Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to 

design, data analysis, and model building: Wiley-Interscience. 

Brooks, W., & Motley, R. (1980). Analysis of discrete software reliability models. IBM Federal 

Systems. 

Bugzilla homepage. (Last checked: October 2008). from http://www.bugzilla.org 

Burgess, C. J., & Lefley, M. (2001). Can genetic programming improve software effort estimation? A 

comparative evaluation. Information and Software Technology, 43(14), 863-873. 

Burke, E. K., & Kendall, G. (2005). Search methodologies–Introductory tutorials in optimization and 

decision support techniques: Springer Science and Business Media. 

Cai, K.-Y. (1996). Introduction to fuzzy reliability, chapter 8 of Fuzzy methods in software reliability 

modeling: Kluwer International Series in Engineering and Computer Science, Kluwer Academic 

Publishers. 

Cai, K.-Y., Wen, C., & Zhang, M. (1991). A critical review on software reliability modeling. Reliability 

engineering and system safety, 32(3), 357-371. 

Cai, K.-Y., Wen, C., & Zhang, M. (1993). A novel approach to software reliability modeling. 

Microelectronics and Reliability, 33(15), 2265-2267. 

Carolyn, M., Gada, K., Martin, L., Keith, P., Chris, S., Martin, S., et al. (2000). An investigation of 

machine learning based prediction systems. J. Syst. Softw., 53(1), 23-29. 

Claes, W., Per, R., Martin, H, Magnus, C. O., Björn, R., Wesslén, A. (2000). Experimentation in 

software engineering: An introduction: Kluwer Academic Publishers. 

Costa, E. O., de Souza, G. A., Pozo, A. T. R., & Vergilio, S. R. (2007). Exploring Genetic Programming 

and Boosting Techniques to Model Software Reliability. Reliability, IEEE Transactions on, 

56(3), 422-434. 



 

Dolado, J. J., Fernandez, L., Otero, M. C., & Urkola, L. (1999). Software effort estimation: The elusive 

goal in project management. Paper presented at the Proceedings of the International Conference 

on Enterprise Information Systems.  

Donald, E. N. (2002). An Enhanced Neural Network Technique for Software Risk Analysis. IEEE 

Trans. Softw. Eng., 28(9), 904-912. 

Eduardo, O., Aurora, P., & Silvia Regina, V. (2006). Using Boosting Techniques to Improve Software 

Reliability Models Based on Genetic Programming. Paper presented at the Proceedings of the 

18th IEEE International Conference on Tools with Artificial Intelligence.  

Eduardo Oliveira, C., Silvia, R. V., Aurora, P., & Gustavo, S. (2005). Modeling Software Reliability 

Growth with Genetic Programming. Paper presented at the Proceedings of the 16th IEEE 

International Symposium on Software Reliability Engineering.  

Farr, W. (Last checked March 2009). SMERFS3 homepage. from 

http://www.slingcode.com/smerfs/downloads/ 

Giovanni, D., & Mauro, P. (2002). An empirical evaluation of fault-proneness models. Paper presented 

at the Proceedings of the 24th International Conference on Software Engineering.  

Goel, A. L. (1985). Software Reliability Models: Assumptions, Limitations, and Applicability. Software 

Engineering, IEEE Transactions on, SE-11(12), 1411-1423. 

Goel, A. L., & Okumoto, K. (1979). Time dependent error detection rate model for software reliability 

and other performance measures. IEEE Transactions on Reliability, R-28(3), 206-211. 

Gray, A. R., & MacDonell, S. G. (1997). A comparison of techniques for developing predictive models 

of software metrics. Information and Software Technology, 39(6), 425-437. 

Gunn, S. R. (1998). Support vector machines for classification and regression. School of electronics and 

computer science, University of Southampton. 



 

Guo, P., & Lyu, M. R. (2004). A pseudoinverse learning algorithm for feedforward neural networks with 

stacked generalization applications to software reliability growth data. Neurocomputing, 56, 101-

121. 

Ho, S. L., Xie, M., & Goh, T. N. (2003). A study of the connectionist models for software reliability 

prediction. Computers & Mathematics with Applications, 46(7), 1037-1045. 

Hollander, M., & Wolfe, D. A. (1999). Non-parametric statistical methods: John Wiley and Sons, Inc. 

Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 696-

701. 

Jeff, T. (1996). An integrated approach to test tracking and analysis. J. Syst. Softw., 35(2), 127-140. 

Jeremy, G., & Art, F. (2007). Data mining static code attributes to learn defect predictors. IEEE Trans. 

Softw. Eng., 33(1), 2-13. 

Jos, & Javier, D. (2000). A validation of the component-based method for software size estimation. 

IEEE Trans. Softw. Eng., 26(10), 1006-1021. 

Juristo, N., & Moreno, A. M. (2001). Basics of software engineering experimentation: Kluwer 

Academic Publishers. 

Kachigan, S. K. (1982). Statistical analysis - An interdisciplinary introduction to univariate and 

multivariate methods: Radius Press. 

Kai-Yuan, C., Lin, C., Wei-Dong, W., Zhou-Yi, Y., & David, Z. (2001). On the neural network 

approach in software reliability modeling. J. Syst. Softw., 58(1), 47-62. 

Karunanithi, N. (1993). A neural network approach for software reliability growth modeling in the 

presence of code churn. Paper presented at the Proceedings of Fourth International Symposium 

on Software Reliability Engineering, 1993.  

Karunanithi, N., & Malaiya, Y. K. (1996). Neural networks for software reliability engineering , in 



 

Handbook of software reliability and system reliability: McGraw-Hill Inc., Hightstown, NJ, 

USA. 

Karunanithi, N., Malaiya, Y. K., & Whitley, D. (1991). Prediction of software reliability using neural 

networks. Paper presented at the proceedings of the 1991 International Symposium on Software 

Reliability Engineering.  

Kehan, G., & Khoshgoftaar, T. M. (2007). A Comprehensive Empirical Study of Count Models for 

Software Fault Prediction. IEEE Transactions on Reliability, 56(2), 223-236. 

Khoshgoftaar, T., Allen, E., Hudepohl, J., & Aud, S. (1997). Application of neural networks to software 

quality modeling of a very large telecommunications system. IEEE Transactions on Neural 

Networks, 8(4). 

Khoshgoftaar, T. M., & Allen, E. B. (1999). Logistic regression modeling of software quality. 

International Journal of Reliability, Quality and Safety Engineering, 6(4), 303-317. 

Khoshgoftaar, T. M., Pandya, A. S., & More, H. B. (1992). A neural network approach for predicting 

software development faults. Paper presented at the Proceedings of the Third International 

Symposium on Software Reliability Engineering, 1992.  

Khoshgoftaar, T. M., & Seliya, N. (2003). Fault Prediction Modeling for Software Quality Estimation: 

Comparing Commonly Used Techniques. Empirical Software Engineering, 8(3), 255-283. 

Khoshgoftaar, T. M., & Szabo, R. M. (1996). Using neural networks to predict software faults during 

testing. IEEE Transactions on Reliability, 45(3), 456-462. 

Khoshgoftaar, T. M., & Yi, L. (2007). A Multi-Objective Software Quality Classification Model Using 

Genetic Programming. IEEE Transactions on Reliability, 56(2), 237-245. 

Kitchenham, B. A., Pickard, L. M., MacDonell, S. G., & Shepperd, M. J. (2001). What accuracy 

statistics really measure? Software, IEE Proceedings -, 148(3), 81-85. 



 

Kordon, A., Smits, G., Jordaan, E., & Rightor, E. (2002). Robust soft sensors based on integration of 

genetic programming, analytical neural networks, and support vector machines. Paper presented 

at the Proceedings of the CEC '02 Proceedings of the 2002 Congress on Evolutionary 

Computation, 2002.  

Kotanchek, M., Smits, G., & Kordon, A. (2003). Industrial strength genetic programming. In Genetic 

programming theory and practise (pp. 239-256): Kluwer. 

Koza, J. (1992). Genetic programming: on the programming of computers by means of natural 

selection: MIT Press. 

Langdon, W. B. (2008). A Field Guide to Genetic Programing: Published via http://lulu.com and freely 

available at http://www.gp-field-guide.org.uk. 

Laura Ignizio, B. (1991). Introduction to artificial neural systems for pattern recognition. Comput. Oper. 

Res., 18(2), 211-220. 

Lesley, P., Barbara, K., & Susan, L. (1999). An Investigation of Analysis Techniques for Software 

Datasets. Paper presented at the Proceedings of the 6th International Symposium on Software 

Metrics.  

Leung, H., & Varadan, V. (2002). System modeling and design using genetic programming. Paper 

presented at the Proceedings of First IEEE International Conference on Cognitive Informatics, 

2002.  

Li, P. L., Shaw, M., & Herbsleb, J. (2003). Selecting a defect prediction model for maintenance resource 

planning and software insurance. Paper presented at the proceedings of the Fifth Workshop on 

Economics-Driven Software Research. 

Lionel, C. B., Victor, R. B., & Christopher, J. H. (1993). Developing Interpretable Models with 

Optimized set Reduction for Identifying High-Risk Software Components. IEEE Trans. Softw. 



 

Eng., 19(11), 1028-1044. 

Lionel, C. B., Victor, R. B., & William, M. T. (1992). A Pattern Recognition Approach for Software 

Engineering Data Analysis. IEEE Trans. Softw. Eng., 18(11), 931-942. 

Lionel, C. B., Walcelio, L. M., Wust, J. (2002). Assessing the applicability of fault-proneness models 

across object-oriented software projects. IEEE Trans. Softw. Eng., 28(7), 706-720. 

Magnus, C. O., & Per, R. (2002). Experience from Replicating Empirical Studies on Prediction Models. 

Paper presented at the Proceedings of the 8th International Symposium on Software Metrics.  

Malaiya, Y. K., Karunanithi, N., & Verma, P. (1990). Predictability measures for software reliability 

models. Paper presented at the Proceedings of COMPSAC 90 Fourteenth Annual International 

Computer Software and Applications Conference, 1990.  

Martin, S., & Gada, K. (2001). Comparing Software Prediction Techniques Using Simulation. IEEE 

Trans. Softw. Eng., 27(11), 1014-1022. 

Matsumoto, K., Inoue, K., Kikuno, T., & Torii, K. (1988). Experimental evaluation of software 

reliability growth models. Paper presented at FTCS-18, Digest of Papers, the proceedings of 

Eighteenth International Symposium on Fault-Tolerant Computing, 1988.  

Michael, R. L., & Allen, N. (1992). Applying Reliability Models More Effectively. IEEE Softw., 9(4), 

43-52. 

Munson, J. C., & Khoshgoftaar, T. M. (1992). The detection of fault-prone programs. IEEE 

Transactions on Software Engineering, 18(5), 423-433. 

Nachimuthu, K., Darrell, W., & Yashwant, K. M. (1992). Using Neural Networks in Reliability 

Prediction. IEEE Softw., 9(4), 53-59. 

Nachimuthu, K., Darrell, W., & Yashwant, K. M. (1992). Prediction of Software Reliability Using 

Connectionist Models. IEEE Trans. Softw. Eng., 18(7), 563-574. 



 

Niclas, O., Ann Christin, E., & Mary, H. (1997). Early Risk-Management by Identification of Fault-

prone Modules. Empirical Softw. Engg., 2(2), 166-173. 

Niclas, O., & Hans, A. (1996). Predicting Fault-Prone Software Modules in Telephone Switches. IEEE 

Trans. Softw. Eng., 22(12), 886-894. 

Niclas, O., Ming, Z., & Mary, H. (1998). Application of multivariate analysis for software fault 

prediction. Software Quality Control, 7(1), 51-66. 

Nidhi, G., & Manu Pratap, S. (2005). Estimation of software reliability with execution time model using 

the pattern mapping technique of artificial neural network. Comput. Oper. Res., 32(1), 187-199. 

Nikora, A. P. (2009). CASRE homepage. from 

http://www.openchannelfoundation.org/projects/CASRE_3.0 

Nikora, A. P., & Lyu, M. R. (1995). An experiment in determining software reliability model 

applicability. Paper presented at the Proceedings of the Sixth International Symposium on 

  Software Reliability Engineering, 1995.  

Palu, S. (Last checked November 2008). Instance-based learning: A Java implementation. from 

http://www.developer.com/java/other/article.php/10936_1491651_1 

Paul Luo, L., Mary, S., Jim, H., Bonnie, R., & Santhanam, P. (2004). Empirical evaluation of defect 

projection models for widely-deployed production software systems. Paper presented at the 

Proceedings of the 12th ACM SIGSOFT twelfth international symposium on Foundations of 

software engineering.  

Raj Kiran, N., & Ravi, V. (2008). Software reliability prediction by soft computing techniques. Journal 

of Systems and Software, 81(4), 576-583. 

Raymond, E. S. (1999). Cathedral and the bazaar: O'Reily & Associates. 

Reformat, M., Pedrycz, W., & Pizzi, N. J. (2003). Software quality analysis with the use of 



 

computational intelligence. Information and Software Technology, 45(7), 405-417. 

Elaine, J. W., Thomas J. Ostrand & Robert, M. B. (2005). Predicting the Location and Number of Faults 

in Large Software Systems. IEEE Trans. Softw. Eng., 31(4), 340-355. 

Russell, S., & Norvig, P. (2003). Artificial intelligence-A modern approach: Prentice Hall Series in 

Artificial Intelligence. 

Sarah, B., & Bev, L. (1996). Techniques for prediction analysis and recalibration. In Handbook of 

software reliability engineering (pp. 119-166): McGraw-Hill, Inc. 

Sean, L., & Liviu, P. (2006). A comparison of bloat control methods for genetic programming. Evol. 

Comput., 14(3), 309-344. 

Shepperd, M., Cartwright, M., & Kadoda, G. (2000). On Building Prediction Systems for Software 

Engineers. Empirical Software Engineering, 5(3), 175-182. 

Silva, S. (2007). GPLAB - A Genetic Programming Toolbox for MATLAB. from 

http://gplab.sourceforge.net (Last checked 27 February 2009) 

Sitte, R. (1999). Comparison of software-reliability-growth predictions: neural networks vs parametric-

recalibration. IEEE Transactions on Reliability, 48(3), 285-291. 

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 

14(3), 199-222. 

So, S. S., Cha, S. D., & Kwon, Y. R. (2002). Empirical evaluation of a fuzzy logic-based software 

quality prediction model. Fuzzy Sets and Systems, 127(2), 199-208. 

Stefan, L., Bart, B., Christophe, M., & Swantje, P. (2008). Benchmarking Classification Models for 

Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Trans. Softw. 

Eng., 34(4), 485-496. 

Stringfellow, C., & Andrews, A. A. (2002). An Empirical Method for Selecting Software Reliability 



 

Growth Models. Empirical Software Engineering, 7(4), 319-343. 

Susan Elliott, S., Steve, E., & Richard, C. H. (2003). Using benchmarking to advance research: a 

challenge to software engineering. Paper presented at the Proceedings of the 25th International 

Conference on Software Engineering.  

Tadashi, D., Yasuhiko, N., & Shunji, O. (1999). Optimal software release scheduling based on artificial 

neural networks. Ann. Softw. Eng., 8(1-4), 167-185. 

Taghi, M. K., Edward, B. A., Wendell, D. J., & John, P. H. (1999). Classification Tree Models of 

Software Quality Over Multiple Releases. Paper presented at the Proceedings of the 10th 

International Symposium on Software Reliability Engineering.  

Taghi, M. K., John, C. M., Bibhuti, B. B., & Gary, D. R. (1992). Predictive Modeling Techniques of 

Software Quality from Software Measures. IEEE Trans. Softw. Eng., 18(11), 979-987. 

Taghi, M. K., & Naeem, S. (2002). Tree-Based Software Quality Estimation Models For Fault 

Prediction. Paper presented at the Proceedings of the 8th International Symposium on Software 

Metrics.  

Taghi, M. K., Naeem, S., & Nandini, S. (2006). An empirical study of predicting software faults with 

case-based reasoning. Software Quality Control, 14(2), 85-111. 

Taghi, M. K., Yi, L., & Naeem, S. (2004). Module-Order Modeling using an Evolutionary Multi-

Objective Optimization Approach. Paper presented at the Proceedings of the 10th International 

Symposium on Software Metrics.  

Thomas, J. O., & Elaine, J. W. (2002). The distribution of faults in a large industrial software system. 

Paper presented at the Proceedings of the 2002 ACM SIGSOFT international symposium on 

software testing and analysis.  

Tian, L., & Noore, A. (2004). Software reliability prediction using recurrent neural network with 



 

Bayesian regularization. International Journal of Neural Systems, 14(3), 165-174. 

Tian, L., & Noore, A. (2005). Dynamic software reliability prediction: An approach based on Support 

Vector Machines. International Journal of Reliability, Quality and Safety Engineering, 12(4), 

309-321. 

Tian, L., & Noore, A. (2005). Evolutionary neural network modeling for software cumulative failure 

time prediction. International Journal of Reliability, Quality and Safety Engineering, 87(1), 45-

51. 

Tian, L., & Noore, A. (2005). On-line prediction of software reliability using an evolutionary 

connectionist model. Journal of Systems and Software, 77(22), 173-180. 

Tian, L., & Noore, A. (2007). Computational intelligence methods in software reliability prediction. 

Computational Intelligence in Reliability Engineering, 39, 375-398. 

Tibor, G., Rudolf, F., & Istvan, S. (2005). Empirical Validation of Object-Oriented Metrics on Open 

Source Software for Fault Prediction. IEEE Trans. Softw. Eng., 31(10), 897-910. 

Utkin, L., Gurov, S., & Shubinsky, M. (2002). A fuzzy software reliability model with multiple-error 

introduction and removal. International Journal of Reliability, Quality and Safety Engineering, 

9(3). 

Venkata, U. B. C., Farokh, B. B., Yen, I. L., & Raymond, A. P. (2005). Empirical Assessment of 

Machine Learning based Software Defect Prediction Techniques. Paper presented at the 

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time 

Dependable Systems.  

Victor, R. B., Lionel, C. B., Walc, & lio, L. M. (1996). A Validation of Object-Oriented Design Metrics 

as Quality Indicators. IEEE Trans. Softw. Eng., 22(10), 751-761. 

Wasif, A., & Richard, T. (2008). A Comparative Evaluation of Using Genetic Programming for 



 

Predicting Fault Count Data. Paper presented at the Proceedings of The Third International 

Conference on Software Engineering Advances. 

Wasif, A., & Richard, T. (2008). Suitability of Genetic Programming for Software Reliability Growth 

Modeling. Paper presented at the Proceedings of the International Symposium on Computer 

Science and its Applications.  

Witten, I. H., & Frank, E. (2005). Data mining-Practical machine learning tools and techniques: 

Morgan Kaufmann Publishers. 

Wood, A. (1996). Predicting software reliability. Computers, 29(11), 69-77. 

Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped reliability growth modeling for software error 

detection. IEEE Transactions on Reliability, R-32(5), 475-478. 

Yongqiang, Z., & Huashan, C. (2006). Predicting for MTBF Failure Data Series of Software Reliability 

by Genetic Programming Algorithm. Paper presented at the Proceedings of the Sixth 

International Conference on Intelligent Systems Design and Applications - Volume 01.  

Yu, T. J., Shen, V. Y., & Dunsmore, H. E. (1988). An Analysis of Several Software Defect Models. 

IEEE Trans. Softw. Eng., 14(9), 1261-1270. 

Yu-Shen, S., & Chin-Yu, H. (2007). Neural-network-based approaches for software reliability 

estimation using dynamic weighted combinational models. J. Syst. Softw., 80(4), 606-615. 

Zhang, D., & Tsai, J. (2003). Machine Learning and Software Engineering. Software Quality Journal, 

11(2), 87-119. 


