
Using Exploration
Focused Techniques to Augment Search-Based
Software Testing: An Experimental Evaluation

Bogdan Marculescu∗, Robert Feldt∗ and Richard Torkar∗†
∗Blekinge Institute of Technology

School of Computing
Karlskrona, Sweden

†Chalmers and the University of Gothenburg
Dept. of Computer Science and Engineering

Gothenburg, Sweden

Abstract—Search-based software testing (SBST)
often uses objective-based approaches to solve testing
problems. There are, however, situations where the
validity and completeness of objectives cannot be
ascertained, or where there is insufficient information
to define objectives at all. Incomplete or incorrect
objectives may steer the search away from interesting
behavior of the software under test (SUT) and from
potentially useful test cases.

This papers investigates the degree to which
exploration-based algorithms can be used to
complement an objective-based tool we have previously
developed and evaluated in industry. In particular, we
would like to assess how exploration-based algorithms
perform in situations where little information on the
behavior space is available a priori.

We have conducted an experiment comparing the
performance of an exploration-based algorithm with
an objective-based one on a problem with a high-
dimensional behavior space. In addition, we evaluate
to what extent that performance degrades in situations
where computational resources are limited.

Our experiment shows that exploration-based
algorithms are useful in covering a larger area of the
behavior space and result in a more diverse solution
population. Typically, of the candidate solutions that
exploration-based algorithms propose, more than 80%
were not covered by their objective-based counterpart.
This increased diversity is present in the resulting pop-
ulation even when computational resources are limited.

We conclude that exploration-focused algorithms
are a useful means of investigating high-dimensional
spaces, even in situations where limited information
and limited resources are available.

I. Introduction

Search-based software testing (SBST) applies meta-
heuristic search algorithms to problems in software
testing [1], [2]. In practice, this means using search-based
techniques to optimize quantifiable aspects of the behavior
of the system under test (SUT) and/or of the test cases
themselves. These aspects are defined in terms of search
objectives and there is often a multitude of them. For
example one objective might be full (structural) code
coverage, another one to reach a high mutation score and
a third one that the test case is as short as possible.

Lehman and Stanley [3], draw attention to the
limitations of search-based systems that are based solely
on the optimization of objectives, particularly in the case
of deceptive problems. They define a deceptive problem
as a problem where one “must seemingly move farther
from the goal to ever have the hope of reaching it.”

Feldt and Poulding [4] also call for a broadening of the
existing notion of search-based technique and support
that argument with their finding that Genetic Algorithms
(GA), either in their single-objective or multi-objective
forms, are the most prevalent algorithm applied in recent
work in software testing.

In the general case, the problem of exploring the
behavior space becomes a many-objective problem.
Ishibuchi et al.[5] define a many-objective problem as a
multi-objective problem with four or more objectives.

Our previous work on developing and industrially eval-
uating an Interactive Search Based Software Testing (IS-
BST) tool [6], [7] has also focused on objective-based opti-
mization. In that case we relied on domain expertise pro-
vided by our industrial partner to provide meaningful ob-
jectives and to validate our ISBST tool. This ensured that
the objectives selected for the ISBST system were relevant
to the domain, and as complete as possible in describing
the interesting characteristics of the tests and the SUT.

However, such detailed knowledge of the domain may
be unavailable in other companies or prohibitive in terms
of the cost or time involved. In such cases, the need arises
for a exploration-focused approach that can investigate the
behavior space of a SUT with little prior knowledge of the
topology of that space. Moreover, if the relationship be-
tween the inputs of the SUT and its behavior or objective
is non-trivial, we can thing of the SUT as a deceptive op-
timization problem. Then the search cannot target higher
fitness areas of the search space, since the position, and
even existence, of such areas cannot be known a priori.

We define the “codomain” of a SUT as the set of all
possible characteristics of that SUT: all the outputs,
or functions of those outputs, are included in this set.
Further, we define “observed behavior space”, or just
“behavior space”, as the subset of the codomain into which
the measured outputs of the SUT, or any functions of those

outputs, is constrained to fall. It differs from the codomain
in that the behavior space only refers to those outputs
that are measured or the functions of those outputs
that are computed. Additional behavior dimensions may
exist that are not measured, not calculated from other
measurements, and potentially not even known. As such,
the behavior space does not completely describe all
the characteristics of the SUT and may be incomplete.
Moreover, the mechanisms used for the measurements may
be flawed. The result is that the behavior space is fluid, as
new dimensions may be added and new values observed.

This creates a problem for objective-based SBST
algorithms, since only optimizing those behavior
dimensions that are being measured can lead the search
away from interesting behaviors. This issue is even more
problematic, as what constitutes “interesting behavior”
might not be known from the outset, and behaviors can
be more or less interesting as the search progresses and
more information becomes available. Moreover, using
incomplete behavior dimensions is a difficult problem
to identify when using an objective-based algorithm.
Therefore, any bias induced by the existence of additional
relevant behavior dimensions is also difficult to ascertain.

In an ISBST tool, what is needed is a general way
to explore the behavior space and the properties of the
generated test cases when it is not yet clear what are
interesting or even good behaviors that we are looking for.

In recent years a number of such, exploration-focused
algorithms have been proposed and in this paper we
evaluate their relative merits for interactive, search-
based software test generation: Novelty Search [8],
Viability Evolution [9], and MAP-Elites or Illumination
Search [10]. These algorithms will be compared with an
objective-based alternative: a Differential Evolution (DE)
algorithm [11]. Differential Evolution was used in previous
validations of the ISBST tool in both an industrial and a
laboratory setting, so we chose it as a baseline to evaluate
exploration-focused alternatives.

In this paper, we show that objective-based and
exploration-based algorithms investigate different areas
of the test behavior space. Since they cover a wider
area of this space, exploration-based algorithms can be
used as methods to investigate and maintain population
diversity, and therefore enhance existing search-based
software testing techniques. Moreover, by enhancing
existing techniques with exploration-based algorithms,
they would be less vulnerable to incompletely or
incorrectly defined search objectives, which is often the
case in real-world, industrial testing problems.

In software testing terms, this means that the two
approaches identify different behaviors of the SUT and
a combined test suite would have greater diversity. Work
by Feldt et al. suggests that higher diversity in test suites
is linked to higher structural and fault coverage [12], [13].

Next, Section II presents the research questions.
Section III provides more detailed information on the
context, the implementation of the algorithms included
in the study, considerations on how the resulting data
was analyzed, and details on the practical execution of

the experiment. The results are discussed and analyzed
in Section IV, and their implications are discussed in
Section V. Sections VI and VII conclude the paper and
describe our ideas for future work.

II. Research Questions
This paper studies the following research questions:
RQ1. To what extent do exploration-focused algorithms

investigate a different area of the behavior space than the
objective-based ISBST tool?

Our hypothesis is that exploration-focused algorithms
will tend to investigate a different area of the behavior
space than the objective focused approach. Intuitively, this
is a result of a lack of pressure to optimize the objectives.
If this hypothesis holds, we can use exploration-based
algorithms to maintain diversity in the solution population
and make the overall SBST system less vulnerable to in-
complete or inaccurate behavior objectives. Essentially, in-
stead of requiring the tester to know up front which testing
objectives to fulfill and set specific targets for each of them,
an exploration-based system can automatically explore the
space of system and test behaviors and present a more
varied set to the tester from which he/she can then choose.

An interesting question to investigate is that of
relevance of the behavior areas investigated. Since an
exploration-focused algorithm will have a different set of
pressures on the population of test case candidates, it is
to be expected that it will investigate different behaviors.
Comparisons of candidate solutions in multi-objective
problems can be done by means of Pareto efficiency or
dominance [14]. It would be interesting to see if all of the
behaviors found by means of exploration are dominated
by those found by objective-based search.

If exploring the behavior space only results in large
numbers of dominated solutions, then exploration is
only relevant as a first step in investigating a completely
unknown behavior space. Conversely, if exploration based
techniques still find solutions that are non-dominated,
this can mean that the contribution such a technique can
bring extends beyond the first look at the behavior space
when specific target values are set for the objectives, or
some of the objectives.

RQ2. Do exploration-focused algorithms provide the
same benefit to diversity when running with restricted
resources, i.e. a reduced number of available optimization
steps.

Our previous studies indicate that there is a practical
limit on the resources available to an algorithm in an
interactive setting such as ISBST. Long waiting times
can lead to the human specialist becoming bored or
disengaged, with direct repercussions on the quality of
their input and of their guidance of the testing system.
Our hypothesis is that exploration-focused algorithms
can provide a boost to diversity, even with the limited
number of optimization steps available.

If this hypothesis holds, exploration-focused algorithms
can be used either to complement objective based
algorithms, or to replace them where the latter are
inapplicable.

III. Experimental Setup
This section will provide an overview of the experiment,

along with the research instruments, system under test,
methods of analysis, and other practical considerations
on the execution of the experiment.

The goal of the experiment is to investigate the areas
of the behavior space that each of the algorithms covers
and, thus, provide answers to our two research questions.
In particular, we want to investigate how the algorithms
behave in situations where little initial information is
available on the behavior space.

A. Context
The impetus for this work came out of a previous

study [7], describing the Interactive Search-Based
Software Testing (ISBST) tool. The ISBST tool uses
interaction to enable a human domain specialist to guide
the search process by weighting a number of objectives
based on their relevance at any given time. That work,
however, relied on the experience and knowledge of
domain specialists to define and validate the search
objectives. In practice, this means that the technique is
difficult to apply in situations where such detailed domain
knowledge is unavailable.

For a more general application of ISBST, we looked
at techniques that allow automated exploration of the
behavior space, with little a priori knowledge of its
topology or any domain specific limitations.

The information that is initially available on the
behavior space is the number of behavior dimensions.
Additional information will be obtained as the search
proceeds and new values of each of the behavior
dimensions will be observed. Thus, all the information
that is obtained, is derived from the exploration itself,
and can be considered reliable.

Thus, even if the search objectives are incomplete,
the focus on exploration diversity means no potentially
interesting SUT behaviors are ignored by the search. In
the case of inaccurately defined search objectives, the
added population diversity means that relevant behaviors
are maintained in the population until the problem is
identified and corrected.

B. System under Test
Previous experience also informed our choice of system

under test. The selected SUT would have to use a large
number of inputs and its behavior would have to be
expressed as a many-objective problem.

The system under test selected for the experiment is
a k-means clustering algorithm implemented in the Julia
programming language 1. The SUT itself is part of the
Julia Clustering package 2, and is actively maintained by
its developers.

For the purpose of the experiment, each of the
investigated search algorithms will search for a group
ninputs = 61 inputs, representing a group of npoints = 30

1http://julialang.org/
2https://github.com/JuliaStats/Clustering.jl

No. Objective Description
1 Number of

Clusters
Number of clusters to be found. (The k-means
algorithm required the number of clusters to be
found as an input).

2 Total Cost A measure of the distance between the center
of a cluster and each element in a cluster. Low
values indicate well-defined, tightly packed
clusters. High values indicate loosely-defined
and indistinct clusters.

3 Number of
Iterations

k-means clustering is done in several iterations,
until the clusters are stable.

4 Mean
Silhouette

The Silhouette is a quantitative way to measure
how well each item lies in its own cluster. The
Silhouette of each point has a value between 0
and 1, with higher values (closer to 1) indicating
that the point lies well within its own cluster
and there is no meaningful alternative cluster
it could be assigned to. The mean is computed
to provide an overview of how well the points
belong to their respective clusters across the
entire population.

5 Silhouette
Range

This is the absolute distance between the
lowest and the highest silhouette values found
in the current candidate. A high value for this
attribute means that the test case contains
both well-defined and ill-defined clusters. A low
value indicates that the test case contains only
one of the two options.

6 Mean
Weight

The weight of a cluster is the sum of the weights
of all the points within it. For the purpose of
this experiment, each point has the same
weight: weight = 1. Larger clusters, with more
widely dispersed points, will get high values for
this quality objective. Small, tightly packed,
clusters will get low values for this objective.

7 Weight
Range

Test cases containing a combination of large
and small clusters will obtain a high value with
respect to this objective.

TABLE I
Overview of the quality objectives used in the experiment.

two-dimensional points, and the nclusters number of
desired clusters. The algorithm will employ the SUT, the
k-means algorithm from the Clustering package, to create
nclusters clusters from the input points.

The behavior space consists of nobjectives=7 dimensions
that characterize the resulting clustering. The behavior
dimensions are described in more detail in Table I. The
behavior dimensions are based on the clustering validation
information already provided by the implementation of
the k-means algorithm; this does represent a use case
where little is really known about the behavior space.
The developer/tester might not know which test cases
and output behavior that are valid and important for
the testing to be of high quality. One potential solution
consists of one set of inputs and a set of values for each
of the behavior dimensions.

For the objective-based system, each search objective
can be written to be maximized or minimized. In our
case, we wrote the search objective so that smaller values
are better, for all cases. This is done solely to simplify
presentation and interpretation of the results.

Note that the number of clusters is both an input
and a search objective. An input, because the number
of clusters is a requirement of the k-means algorithm.
However, it is difficult to know a priori how many clusters
are needed. So the number of clusters is to be minimized,
but test cases with a higher number of clusters may
provide benefits with respect to other objectives. The
number of clusters must be part of the fitness evaluation

and have an influence on the fitness score, for the system
to be able to make such trade-offs.

The Clustering implementation we use as SUT is a
good representation of the system that our industrial
partner commonly uses: it has a large input space, a
many-objective behavior space, and is too vast to be
explored manually.

For this evaluation, we have also purposefully ignored
domain knowledge about the values and limitations
of the behavior dimensions. This would re-create the
general case scenario discussed earlier, where the only
information regarding the behavior space that is available
is the number of dimensions. The practical effect of this
decision is to allow exploration-focused algorithms the
freedom to investigate the behavior space at will, and
provide no negative impact on the objective based system.

C. Research Instruments
All the search algorithms being compared were

implemented in the Julia programming language, to ensure
that no bias be traced to language specificities. Moreover,
this also provided confidence that interfacing with the
SUT would not provide additional complications, either
during development or while running the experiment.

All the algorithms use the same mechanism to generate
an initial population of test cases, and the initial popula-
tion is the same size for all algorithms: Npopulation=100.
The initial population is generated randomly from a
uniform distribution, and covers the entire, allowed input
space. For this experiment we consider an initial popula-
tion with floating point values Vcoord ∈ (−1000.0,1000.0)
for the point coordinates, and with nclusters∈(3,11).

The exploration-focused algorithms are all evolutionary
algorithms and need genetic operators to be applied. To
only compare their ability to explore the spec of test
behaviors we used the same mutation operators for all
of them. The candidate selected for mutation has one of
the input dimensions mutated. The mutation is based on
a normal distribution, with a high likelihood of a small
change, but with larger changes possible. The mutation
is bounded by the extrema of the input dimension, so no
invalid inputs are obtained.

Note that, while the mutation mechanism is the same
for all the algorithms, selecting which candidate to
mutate varies and will be explained in more detail for
each algorithm.

The stop condition for all the algorithms will be
reaching a maximum number of optimization steps nsteps.
The value of nsteps is the same for all the algorithms,
thus ensuring a fair evaluation of their capabilities.

The four algorithms that are being evaluated are
presented below.

Viability Evolution.
Viability Evolution [9] is a technique that allows

users to specify a set of desired values of the behavior
dimensions, that the algorithm will evolve towards.

For each dimension of the behavior, a set of boundaries
is defined. The initial boundaries are selected to encompass
the entire population. The boundaries are then updated

to exclude a fraction fexcluded of the candidates. In our
implementation, each boundary update renders at least
fexcluded=0.33 of the population unviable.

For each optimization step, one of the remaining
candidates is selected and mutated. If the mutant is
viable, it is added to the population. If the mutant is
not viable, it is discarded. Once the population numbers
have returned to previous levels, the boundaries are
again updated and the process resumes. The algorithms
stops when the current population boundaries match the
target behavior boundaries, or the maximum number of
optimization steps has been reached.

Viability Evolution employs a family system as a
mechanism to ensure population diversity. Each candidate
in the initial population becomes the progenitor of a
family. Each mutant resulting from the candidate is part
of the same family. Selecting which candidate to mutate
is based on the family. The chance for a family to be
selected is inversely proportional to its size. Once a family
has been selected, a candidate for mutation is picked
randomly, from a uniform distribution.

As stated previously, the behavior of the SUT is defined
in terms of dimensions that are to be minimized. This
enables us to simplify the definition of the target behavior
for Viability Evolution. It also means that the algorithm
will not stop until the maximum allowed number of
optimization steps nsteps has been reached.

It should be noted that some familiarity with the
behavior space is required, to allow a target for Viability
Search to be defined in a meaningful way.

Novelty Search.
Novelty Search, is defined by Lehman and Stanley as

an evolutionary algorithm that differs from the norm by
“replacing the fitness function with a novelty metric” [3].
Solutions that are novel, are then added to an archive for
future comparisons. However, defining a meaningful nov-
elty metric is not as simple a task as it sounds. The initial
paper describes a maze navigating robot, and defines the
novelty metric as the Euclidean distance between the
point the current solution reaches, and the points reached
by previous attempts, as stored in the archive. Since the
authors are looking at behavior in a two-dimensional
space, Euclidean distance is a reasonable choice.

In our case, we assume little knowledge of which of
the dimensions of the behavior space is relevant. As a
result, we would like to evaluate SUT behavior based on
all identified dimensions. This turns the relevant behavior
space from two-dimensional to many-dimensional. For
many-objective problems, however, work by Aggarwal et
al. [15] suggests that Euclidean distance is less meaningful.
Instead, they suggest fractional distance metrics

distpd(x,y)=

[d∑
i=1

||xi−yi||f
](1/f)

In the formula above, d is the number of dimensions
and f is of the form 1/l, where l is some integer.
Their work argues that fractional distance metrics is
more appropriate for high-dimensional data. In our

implementation of Novelty Search we used the fractional
distance metric described above. The value, l = 7, was
based on the number of behavior dimensions.

Novelty Search computes the sparseness for each
candidate, as the distance to the k-nearest candidates.
The sparseness is then used for transferring candidates to
the archive and as a mechanism to select which candidates
are to be mutated.

The candidates with the highest sparseness are those
considered for inclusion in the archive. A candidate thus
selected, is then assessed with respect to its distance from
the other candidates in the archive. If the solution between
the current candidate and the closest candidate already
in the archive is higher than a threshold value ρthreshold,
the current candidate is included in the archive. The first
member of the archive is the candidate with the highest
sparseness in the initial population. The value of ρthreshold
is based on the distance between the initial member of
the archive and the most distant candidate from it, i.e.
the highest observed distance in the initial population.

The likelihood that a candidate is selected for mutation
is directly proportional to the sparseness value of that
candidate.

As with the other algorithms, the Novelty Search
algorithms will use the maximum allowed number of
optimization steps as its only stopping condition, to
ensure a fair evaluation.

We also note that Novelty Search requires that a
meaningful measure of “novelty” be provided. This
suggests that some understanding of the behavior space
is required to ensure correct application of the algorithm.
However, a general novelty metric such as the one we use
here might be suitable in many cases given a vector of
values for the behavior dimensions.

MAP-Elites (Illumination Search).
MAP-Elites is an algorithm proposed by Mouret and

Clune [10] to explore a search space while seeking to
avoid local optima. Since they define their algorithms as
“illuminating search spaces”, we have taken to calling it
Illumination Search.

The algorithm splits the behavior space into a number
of cells, each cell holding at most a single candidate.
At each optimization step, a cell is chosen randomly,
from a uniform distribution. The candidate within the
selected cell is mutated, it is supplied as a test case to
the SUT and the behavior recorded. The appropriate cell
for the mutant is then found. If that cell is empty, the
mutant is assigned to occupy it and the process resumes.
If the cell is occupied, the mutant replaces the existing
occupant only if its performance is better than that of
the occupant. The algorithms then resumes. Note that
it needs a definition of performance in addition to the
definition of behavioral dimensions.

A few things need to be discussed regarding Illumination
Search, and our implementation of the algorithm. First
of all, defining performance is not a trivial task, given the
multi-dimensional behavior space. We settled on defining
performance as Pareto dominance. Thus, a mutant
replaces the current occupant of a cell if it is Pareto

dominant. In this case, this was possible since information
on what would constitute a “better” candidate is available
for each dimension. In situations where this information
is not available, alternative measurements of performance
would have to be defined.

The second issue is that Illumination Search divides
the behavior space into cells, but the exact mechanism is
not described in detail in the original paper [10]. In our
work, we assume limited knowledge of the behavior space,
meaning that theoretical extrema cannot be defined
for each dimension. Our solution to this problem was
to define cell size in terms of the random population
generated at the beginning of the algorithm. This is a
solution which is similar how Novelty Search decides the
value of its threshold from the initial population.

Two versions resulted from this approach. The first di-
vided the space defined by the initial population, and split
that into several cells, adding a cell for higher and a cell for
lower values for each dimension. This first version provides
good resolution for the behavior area covered by the initial
population, and allows the search to cover the initial
area and identify good solutions within existing maxima
and minima. The drawback is that searching outside the
extrema of the initial population is problematic with this
approach, effectively limiting the search. The search could
thus be stymied by an initial population that does not well
represent the whole set of behaviors that can be found.

The second version used the initial population to define
a cell size, and uses that cell size to classify further output,
even outside the min and max values for each dimension
as seen in the initial population. This places no limit on
the number of cells that can be investigated and does not
limit the search. The goal is to preserve the underlying
philosophy of MAP-Elites, which is to ensure that each
potential solution competes against similar candidates.

Note that, given the way we implemented Illumination
Search, the population used to calibrate the cells is an
essential factor. Using a more diverse set of candidates to
define the cells will likely result in a faster exploration of
the behavior space. This resulted in two extra subversions,
one using only the initial population of Npopulation =100
candidates to calibrate the cells. The other uses the
cumulative population of all the algorithms (investigated
prior to Illumination Search) to allow for the purpose. In
practical terms, the first is equivalent to the algorithm
running on its own. The second is representative of
running the algorithm as part of a large system, with other
techniques available to provide the missing information.

Differential Evolution.
The traditional, objective-based search algorithm that

forms the basis for our comparison comparison is a Julia
implementation of the ISBST tool and its Differential
Evolution search algorithm [7]. The tool presented there
consisted of an interaction focused component, the Outer
Cycle; and a search-based component, the Inner Cycle.
Since the Outer Cycle is concerned with interacting with
the domain specialist, it has no impact on the work
presented here.

The Inner Cycle consists of a Differential Evolution
algorithm [11]. Differential Evolution is a parallel, direct
search method. Each potential solution is a vector of real
numbers. The initial population is chosen randomly from
a uniform distribution, and covers the entire parameter
space. New parameter vectors are added by mutation:
adding the weighted difference between two population
vectors to a third vector. For each target vector xi,G,
where i=1,2,...,Npopulation a mutant vector is generated
as follows:

vi,G+1=xr1,G+F ∗(xr2,G−xr3,G) (1)
where r1, r2, r3 ∈ 1,2,...,Npopulation, are integers, and

mutually different, and different from the running index i.
F is a real and constant factor ∈ (0,2] which controls the
amplification of the differential variation (xr2,G−xr3,G).

The result vi,G+1 is then subjected to crossover, by
mixing its parameters with those of another predetermined
vector, and the outcome of this operation is called trial
vector. If the trial vector is an improvement over the
target vector, it replaces it in the following generation [11].

The crossover rate we used is cr=0.5, the scale factor
is F = 0.7, and the population size is population = 100.
The mutation strategy is that proposed by Storn and
Price [11]: DE/rand/1/bin. The strategy uses a differential
evolution algorithm (DE); the vector to be mutated is
randomly chosen (rand); one difference vector is used (1);
the crossover scheme is binomial (bin).

To allow the single objective DE to handle multi-
objective and many-objective problems, we used the Sum
of Weighted Global Averages [16].

This approach normalizes all the values in a generation
to an interval between the largest and the smallest
values observed for a given objective, both in the current
and previous generations. Each solution is assessed and
receives a score for each of the quality objectives. The
weights are then used to combine the scores into a single
fitness value for each candidate.

IFF (j)=

nObjectives∑
i=1

Weighti∗Valuei,j (2)

where IFF (j) is the fitness value of candidate j,
Weighti is the current weight of the objective i, and
Valuei,j is the fitness value of candidate j measured
by objective i. The value of IFF (j) is the sum of the
weighted fitness values for all nObjective objectives.

For this study, we leave aside the interactive component
and assume no intervention from any human domain
specialist. As a result, all the objectives have the same,
default, weight:

Weighti=0.5

The ISBST serves as a reference, and data obtained
from our previous and ongoing empirical evaluations
of the ISBST system is used to calibrate the current
experiment. We can thus compare the automated search
algorithms in this study also to results from manual
interaction with the tool by human testers.

D. Analysis of exploration results
The goal of our analysis is to determine the degree to

which the exploration-focused algorithms investigate the
same (or, conversely, different) areas of the behavior space
as the differential evolution component of the ISBST.
However, the behavior space is vast and complex, so some
simplifications were made to enable a more expressive
analysis.

The behavior space was divided into cells based on
the maximum and minimum values observed in all the
populations resulting from all runs of the algorithms.
The candidates in the populations were assigned to the
cells. Each of the exploration-focused algorithms was
compared against the differential evolution algorithm in
terms of the number of cells that overlapped, i.e. cells
where both algorithms had at least one candidate present,
and the number of cells that were exclusively occupied
by candidates from one algorithm.

We assess whether an algorithm has explored a different
area of the search space from the objective-based approach
based on the number of cells that had occupants from
that algorithm but not from the DE.

We had concerns regarding the lack of pressure to
provide interesting candidates in the exploration-focused
algorithms, as opposed to the clear drive to optimize in
the objective-based approach. The vast behavior space
means that there is no easy way to determine if the extra
behaviors that are explored are meaningful. To address
this concern we introduced a new measure: the number of
candidates found by an exploration-based algorithm that
are not dominated by candidates found by DE.

E. Experiment Execution
To ensure that the algorithm comparison is fair, each

had the same amount of ‘effort’ available to work with. We
define effort as the number of optimization steps available
to each of the algorithms. This definition is based on the
definition of Črepinšek et al. [17], that suggest measuring
evolutionary algorithm performance based on the number
of fitness evaluations. In our case, each optimization
step results in a single fitness evaluation, for all the
algorithms, so the measurements are equivalent. We chose
optimization steps because they provide a convenient
stop condition for the algorithm runs and because we can
more easily relate optimization steps to previous uses of
the ISBST and, therefore, to practical experience.

We used four values for the available budget of
optimization steps, based on relevant values observed
in previous, practical assessments of the ISBST system:
nSteps1=250,nSteps2=5000,nSteps3=21500,nSteps4=
250000. A more detailed explanation for the reason for
choosing each of the variables can be found in Table II.

The three values for the budget are based on observed
behavior of human domain specialists interacting with
the ISBST system. While it is difficult to comment on
other values, we will state that we have observed users
interact with the system in 45-minute sessions without
fatigue affecting their behavior. We will use the observed

Value Motivation
250 The number of optimization steps between two

interaction events in ISBST. The ISBST system
performs 250 optimization steps after receiving
input from the human specialist. As a result, we use
this value to signify the smallest optimization step
budget that an algorithm would have available.

5000 Practical experience during the use of the ISBST
system indicates that the average number of times
that a human domain specialist interacts with the
ISBST system in one session is ninteractions =20.
This value results in a budget of nsteps = 5000
optimization steps.

21500 The highest number of observed interactions
between a human domain specialist and the ISBST
system, in one session, was ninteractions=86. This
results in a budget of nsteps=21500.

250000 The equivalent of around 50 specialists interacting
with the system for one 45-minute session. This is
used as an extreme value.

TABLE II
Brief explanation of the optimization steps budget available

to each algorithm.

Designation Algorithm
Ill 1e Illumination Search. 1 - with the cells focused on

the initial population; e - early, i.e. the cells are
based on the initial, random, population.

Ill 2e Illumination Search. 2 - the initial population
defines the size of the cell, but does not limit the
number of cells; e - early, i.e. the cells are based on
the initial, random, population.

Ill 1l Illumination Search. 1 - with the cells focused
on the initial population; l - late, i.e. the cell are
defined based on the extrema of all the populations
seen across all algorithms for the current run.

Ill 2l Illumination Search. 2 - the initial population
defines the size of the cell, but does not limit the
number of cells; l - late, i.e. the cell are defined
based on the extrema of all the populations seen
across all algorithms for the current run.

Novelty Novelty Search
Viability Viability Evolution

TABLE III
Designations of the exploration-based algorithms, and

(where applicable) their variants.

number of interactions over a 45-minute session as the
basis for the available budgets for the evaluation.

For each of the budget values, each algorithm was run
30 times.

IV. Results and Analysis
Throughout this section, we will refer to the different

algorithm and algorithm versions by a number of
designations. Those designations are clarified in Table III.

As discussed, we base the analysis on splitting the
observed behavior space into a number of cells. The
observed behavior space consists of the extreme values
in the cumulative candidate population for all of the
algorithms. We evaluate each algorithm by comparison
against the reference: the objective-based DE algorithm.

A. Exploratory Power
First, a quick overview allows us to see that all the

algorithms explore significant areas of the behavior
space that do not overlap with those investigated by the
objective-based technique.

The comparison between the number of cells that
are investigated by the exploration-focused algorithms
exclusively, measured in terms of percentage of the total

Ill_1e Ill_2e Ill_1l Ill_2l Novelty Viability

30
50

70
90

Number of behaviors exclusive to
 the exploration focused algorithms

(a) at 21500 optimization steps.

Ill_1e Ill_2e Ill_1l Ill_2l Novelty Viability

40
60

80
10
0

Number of behaviors exclusive to
 the exploration focused algorithms

(b) at 5000 optimization steps.

Ill_1e Ill_2e Ill_1l Ill_2l Novelty Viability

80
85

90
95

Number of behaviors exclusive to
 the exploration focused algorithms

(c) at 250 optimization steps.

Fig. 1. Areas of the behavior space covered exclusively by the
exploration based algorithms, measured in percentage of the number
of cells in the behavior space.

number of cells covered, can be found in Figure 1. From
these results we can conclude that regardless of the
optimization step budget, exploration-focused algorithms
tend to investigate a much larger area of the behavior
space than objective-based algorithms.

The next step in the analysis is to see how many of these
cells are relevant. Since both the search space and the be-
havior space, are many-dimensional, it is reasonable to ex-
pect that there are many areas that an exploration-focused
algorithm can explore. It may be worth considering how
many of these behaviors are relevant. While it is difficult to
assess, we suggest that a potentially interesting candidate
is one that is not Pareto dominated by existing candidates.
This is computed as follows: for each exploration focused
algorithm, a mixed population is created consisting of the
candidates developed by that algorithm and the objective-
based algorithm. We report the number of non-dominated
candidates, from among this mixed population, developed
by each exploration focused algorithm.While it is difficult
to assess, we suggest that a potentially interesting can-
didate is one that is not Pareto dominated by existing
candidates. This is computed as follows: for each explo-

Ill_1e Ill_2e Ill_1l Ill_2l Novelty Viability

0
10

20
30

Non−dominated

(a) at 21500 optimization steps.

Ill_1e Ill_2e Ill_1l Ill_2l Novelty Viability

0
5

15
25

Non−dominated

(b) at 5000 optimization steps.

Ill_1e Ill_2e Ill_1l Ill_2l Novelty Viability

0
2

4
6

8
12

Non−dominated

(c) at 250 optimization steps.

Fig. 2. Number of exclusive and non-dominated candidates
developed by each algorithm, expressed at percentages of the total
number of occupied cells.

ration focused algorithm, a mixed population is created
consisting of the candidates developed by that algorithm
and the objective-based algorithm. We report the number
of non-dominated candidates, from among this mixed pop-
ulation, developed by each exploration focused algorithm.
The numbers of non-dominated candidates produced by
each algorithm can be seen in Figure 2, measured as
percentages of the total number of occupied cells.

It is worth noting that, while all algorithms seem to
investigate different areas of the behavior space from the
objective-based system, a relatively small number of the
resulting candidates are non-dominated.

This suggests that exploration is a powerful force in
terms of investigating behaviors that might not otherwise
be observed. Large areas of the behavior space can be
investigated, that would not be reached by objective-
based means, even in situations where little information
is available about the behavior space.

The highest number of non-dominated candidates are
obtained by the generous implementations of Illumination
Search, that benefit from a more diverse population for
calibration. Additionally, Viability Search also produces

relatively high number of non-dominated solutions, but
this algorithm contains a clear element of optimization
that guides the exploration more towards a non-dominated
solution front. The downside of these algorithms is that
they require a very diverse population, for the former,
and a clear set of goals, for the latter.

Of the exploration-based algorithms, the sub-variant
of Illumination Search that performs worst in terms of
exploring behavior, performs best in terms of generating
non-dominated solutions. This seems to indicate that
the drive to explore the behavior space and the drive to
optimize the objectives are contradicting.

From this, we conclude that exploration-focused
algorithms are extremely useful tools for maintaining and
increasing population diversity, but less useful when it
comes to driving the search towards optima. Given a vast
behavior space to explore, it is not unreasonable that
these algorithms expend their optimization step budget
on expanding the covered area, and thus are less focused
on finding optimal values.

The candidate populations developed by most of
exploration-based algorithms consist of 80% or more
candidates that cover cells of the behavior space that are
not covered by the objective-based algorithm.

The one exception seems to be one of the sub-variants
of Illumination Search. The same variant has, on the other
hand, a higher number of non-dominated solutions than
any of its peers. This seems to suggest that the exploration
focus is not compatible with the drive to optimize.

Moreover, the lack of focus on optimizing a set of given
objectives means that the exploration based algorithms
are less sensitive to mistakes in the definitions of those
objectives. In situations such as those mentioned above,
where validating objective completeness and correctness
is not possible, exploration-focused algorithms are useful
alternative to objective-based algorithms.

Thus, the answer to RQ1 is that the exploration-based
algorithms spend most of their effort investigating areas
of the search space that objective-based functions ignore.
Each exploration-based algorithms investigates ncells =
650 or more cells that objective-based algorithms do not,
amounting to 70% or more of the candidates developed.

B. Optimization Step Budget
The second of the research questions posed some

concerns on the effect of restricting the available
optimization step budget. The hypothesis is that the
exploration-focused algorithms exhibit the same benefits
even when the optimization step budget is low. This
is important to consider given that in our previous
evaluations, we determined that the ISBST system’s
current Julia implementation could perform around
nsteps = 250 optimization steps between two interactions
with the human domain specialist. This number is high
enough that the domain specialists will see improvement
in the candidate population, but low enough to ensure that
they will not become bored or disengaged with using the
testing tool: usually amounting to fewer than 10 seconds.
This number, however, is implementation specific, as

250 5000 21500 250000

82
84

86
88

Viability

(a) Exclusive cells.

250 5000 21500 250000

20
40

60
80

Viability

(b) Non Dominated.

Fig. 3. The Viability Evolution algorithm behavior with different
number of optimization steps available.

250 5000 21500 250000

91
93

95

Novelty

(a) Exclusive cells.

250 5000 21500 250000

0
10

20
30

40

Novelty

(b) Non Dominated.

Fig. 4. The Novelty Search algorithm behavior with different
number of optimization steps available.

different programming languages may be slower, and thus
be able to conduct fewer steps in the same amount of time.

Figures 3 and 4 show a closer look at the behavior of
two of the algorithms, compared across several values of
the available optimization step budget. The two figures
show clear differences between the algorithms.

Viability Evolution, shown in Figure 3, shows expected
behavior. As the number of optimization steps available
increases, more areas are investigated. The growth in the
number of cells that are exclusively covered is not propor-

tional to the additional resources available. The number of
non-dominated solutions decreases, as the additional opti-
mization steps go towards investigating non-optimal areas
of the space. Since the final comparison is done against the
entire area covered, and the larger optimization budget is
available to the competition as well, a slight drop in the
number of non-dominated solutions is to be expected.

Novelty Search, on the other hand, has somewhat
unintuitive behavior, seen in Figure 4. The area that it
covers also grows, and the same diminishing of the growth
rate can be observed. However, in the case of Novelty
Search, the number of non-dominated solutions drops
significantly. We suggest that this is due to the absence
of any pressure to optimize in Novelty Search.

We can see, however, that both algorithms perform
their exploration duties well, even with the lower
budget available. The answer to RQ2, therefore, is that
exploration-based algorithms provide benefits to diversity
even when running with a small number of optimization
steps. This means that such algorithms can be used in
interactive search-based systems, in spite of the reduced
resources available.

V. Discussion
We have shown that exploration-based algorithms can

help alleviate some of the problems inherent in attempting
to search a behavior space where little information is
available.

We started from the assumption that it will not always
be possible to ensure the completeness and correctness of
search objectives for the ISBST system. This is problem-
atic, as incomplete search objectives mean the search can
be steered away from potentially interesting candidates,
in our case, potentially useful test cases and behaviors.

As an alternative, we focused on exploration-focused
algorithms, to conduct an initial exploration of the
behavior space.

It must be noted, however, that all of the exploration-
focused algorithms discussed in this paper require some
knowledge of the domain and of the behavior space;
in practice they cannot work effectively without some
information about the domain. Novelty Search requires a
domain-relevant distance to be used. We used a fractional
distance metric, as the most general type of distance for
high-dimensional spaces. Undoubtedly, the algorithm will
perform better with domain-specific distance metrics.

Viability Evolution reduces the space of viable solutions,
trying to guide the population towards optimal values for
each of the behavior dimensions. As a result, one must
know for what would be optimal values for every behavior
dimension. In the most general case, one should be aware
of which dimensions are to be minimized and which are
to be maximized, and use absolute extrema to update
the boundaries. We have chosen to implement this most
general case, which likely affected the performance of this
algorithm.

MAP-Elites, or Illumination Search, requires that the
behavior space be split into cells, based on maximum and
minimum values. We supposed that such values are not

available, and defined four versions of this algorithm. All
of the versions we defined are somewhat hampered by the
reduced information. The ideal case, where the extrema
of each behavior dimension are known, will likely yield
better results.

We agree that in trying to make all these algorithms
completely domain agnostic, their performance may have
suffered. Nevertheless, the algorithms have provided
a useful mechanism for exploring a high-dimensional
behavior space, even with the information about the
behavior space being limited.

The approach we used for analysis should also be
discussed. Again, we assumed a situation with minimal
knowledge of the behavior space. So the analysis relies on
the cumulated final population of all the algorithms. This
makes comparison more difficult, as the final population
is unlikely to be identical in any two runs.

The final population, however, is the result of
accumulating a large number of candidates from all the
different algorithms. This ensures a diverse population
that covers a large area of the behavior space for the
SUT. Moreover, each run was conducted 30 times. Given
the large number of diverse candidates in these final
populations, and the large number of runs conducted
without incident, we would argue that the final cumulated
population is stable enough to serve as a reference and to
allow for a useful analysis.

These findings open the possibility of hybrid SBST and
ISBST systems. Exploration would be used to investigate
the behavior space, and to define suitable objectives.
Optimal solutions, as defined by those objectives, could
then be found and proposed. Exploration-based search
could also be used as a mechanism for maintaining
population diversity, reducing the risk of objective-based
search being stuck in local optima.

VI. Conclusions
In this study, we have compared exploration-focused

algorithms, Novelty Search, Viability Evolution, and four
versions of MAP-Elites or Illumination Search, against an
objective-based algorithm, i.e. Differential Evolution.

We have observed that exploration-focused algorithms
can investigate the behavior space, even in situations
where there is little information available about that
space. Not surprisingly, these algorithms are not as
effective in driving towards an optimal solution if the
tester is interested in a specific part of the behavior of the
test or SUT. However, in situations where the objectives
to be optimized are incorrect or incomplete or when little
is known about what type of behavior the system can or
should have, exploration-focused can still be applied and
provide important behavior about the SUT and its tests.

In addition, we conclude that the exploration-focused
algorithms provide useful results even in situations where
there are few optimization steps available. This ability to
explore the behavior space, even with limited resources,
offers a useful mechanism for an initial exploration of
an unknown behavior space. Typically, of the candidate
solutions developed by exploration-based algorithms,

more that 80% were not found by their objective-based
counterpart. Thus we propose that exploration-focused
search algorithms can be an important future component
in interactive as well as non-interactive search-based
software testing systems.

VII. Future Work
This study was driven by the need to find a way to

explore the behavior of complex problems, with little infor-
mation regarding the topology of that behavior space. For
a complex problem, one with high dimensional input and
output space, it may also be difficult to ensure the validity,
correctness, and completeness of any defined objectives.
As a result, exploration-focused algorithms provide a
useful means of exploring the behavior space, without
being affected by any fault in the defined optimization ob-
jectives, or even in the absence of optimization objectives.

We propose, therefore, a hybrid type of search. One
where exploration is conducted in parallel with objective-
based optimization. In the context of the ISBST tool, the
human domain specialist can decide, based on their knowl-
edge and their confidence, whether to explore the behavior
space for a particular SUT, or to define quality objectives
and to search for more clearly optimized candidates.

Alternatively, exploration can be a background process,
to ensure that the diversity of the candidate population
is maintained and that the objective-based optimization
can avoid getting stuck in local optima.

References
[1] P. McMinn, “Search-based software testing: Past, present and

future,” Fourth International Conference on Software Testing,
Verification and Validation Workshops, pp. 153–163, 2011.

[2] W. Afzal, R. Torkar, and R. Feldt, “A systematic
review of search-based testing for non-functional system
properties,” Information and Software Technology,
vol. 51, no. 6, pp. 957–976, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2008.12.005

[3] J. Lehman and K. O. Stanley, “Abandoning objectives:
Evolution through the search for novelty alone,” Evol.
Comput., vol. 19, no. 2, pp. 189–223, Jun. 2011. [Online].
Available: http://dx.doi.org/10.1162/EVCO a 00025

[4] R. Feldt and S. Poulding, “Broadening the search in
search-based software testing: It need not be evolutionary,”
in Search-based Software Testing (SBST), 2015 IEEE
Eigth Int. Workshop on. IEEE, 2015. [Online]. Available:
www.robertfeldt.net/publications/feldt 2015 broadening

the sbst search.pdf
[5] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary

many-objective optimization: A short review,” in Evolutionary
Computation, 2008. CEC 2008. (IEEE World Congress on
Computational Intelligence). IEEE Congress on, June 2008,
pp. 2419–2426.

[6] B. Marculescu, R. Feldt, and R. Torkar, “A concept for an
interactive search-based software testing system,” in Search
Based Software Engineering, ser. Lecture Notes in Computer
Science, G. Fraser and J. Teixeira de Souza, Eds. Springer
Berlin Heidelberg, 2012, vol. 7515, pp. 273–278. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33119-0 21

[7] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding, “An
initial industrial evaluation of interactive search-based testing
for embedded software,” Applied Soft Computing, 2014.

[8] J. Lehman and K. O. Stanley, “Evolving a diversity of virtual
creatures through novelty search and local competition,” in
Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO ’11. New York,
NY, USA: ACM, 2011, pp. 211–218. [Online]. Available:
http://doi.acm.org/10.1145/2001576.2001606

[9] A. Maesani, P. R. Fernando, and D. Floreano, “Artificial
Evolution by Viability Rather Than Competition,” PLOS One,
vol. 9, no. 1, p. e86831, 2014.

[10] J. Mouret and J. Clune, “Illuminating search spaces by
mapping elites,” CoRR, vol. abs/1504.04909, 2015. [Online].
Available: http://arxiv.org/abs/1504.04909

[11] R. Storn and K. Price, “Differential evolution – a
simple and efficient heuristic for global optimization over
continuous spaces,” J. of Global Optimization, vol. 11,
no. 4, pp. 341–359, Dec. 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1008202821328

[12] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching
for cognitively diverse tests: Towards universal test diversity
metrics,” in Software Testing Verification and Validation
Workshop, 2008. ICSTW ’08. IEEE International Conference
on, April 2008, pp. 178–186.

[13] R. Feldt, S. M. Poulding, D. Clark, and S. Yoo, “Test
set diameter: Quantifying the diversity of sets of test
cases,” CoRR, vol. abs/1506.03482, 2015. [Online]. Available:
http://arxiv.org/abs/1506.03482

[14] S. Yoo and M. Harman, “Pareto efficient multi-objective
test case selection,” in Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ser. ISSTA
’07. New York, NY, USA: ACM, 2007, pp. 140–150. [Online].
Available: http://doi.acm.org/10.1145/1273463.1273483

[15] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the
surprising behavior of distance metrics in high dimensional
space,” in Lecture Notes in Computer Science. Springer, 2001,
pp. 420–434.

[16] P. Bentley and J. Wakefield, “Finding acceptable solutions
in the pareto-optimal range using multiobjective genetic
algorithms,” in Soft Computing in Engineering Design and
Manufacturing, P. Chawdhry, R. Roy, and R. Pant, Eds.
Springer London, 1998, pp. 231–240.

[17] M. Črepinšek, S.-H. Liu, and M. Mernik, “Replication
and comparison of computational experiments in
applied evolutionary computing: Common pitfalls and
guidelines to avoid them,” Applied Soft Computing,
vol. 19, no. 0, pp. 161 – 170, 2014. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S1568494614000787

