A Short Report from an Experiment on Improving
Functional Test Coverage Maximization in the
Automotive Industry

Rashid Darwish, Lynnie Nakyanzi Gwosuta and Richard Torkar
Chalmers and the University of Gothenburg, Gothenburg, Sweden
Email: {rashid.darwish, gnlynnie} @gmail.com, torkarr@chalmers.se

Abstract—In the automotive industry, as the complexity of
electronic control units (ECUs) increase, there is a need for
the creation of models that facilitate early tests to ensure
functionality; but there is little guidance on how to write these
tests in order to achieve maximum coverage. Our prototype
CANoe*, which builds on the CANoe and GraphWalker tools, was
evaluated against CANoe with regard to coverage maximization
of generated test cases.

I. INTRODUCTION

As software in Electronic Control Units (ECUs) gets more
and more complex, there is an ever- increasing need for
efficient testing processes in the automotive industry. Auto-
mated model-based software testing has been proposed as one
solution, but due to the complexity of the systems being built,
there is a challenge to generate test cases automatically that
are effective and have a high functional test coverage [4].

With this in mind, creating a method that enables the
developers to model the behavior of the desired system using
graph theory techniques and generate automated test cases
to intelligently test the system functionality is most sought
after. Addressing this challenge will provide an insight into
the possibilities and limitations of using model-based testing
with graph theory techniques to generate effective test cases
that have a maximum functional test coverage.

The knowledge will be applied in the automotive industry
by capitalizing on the advantages of two tools, i.e., using
CANoe [2] and GraphWalker [5] to generate and execute test
cases with maximum functional test coverage. By maximum
functional test coverage we mean how much of the system’s
functionality is exercised by the generated test case.

GraphWalker is a model based testing tool that uses the
command line to read models in the form of finite state
diagrams or directed graphs and generates tests from the
models, either offline or online whereas CANoe is the most
widely used comprehensive software tool for development, test
and analysis of entire ECU networks and individual ECUs in
the automotive industry today.

This will, in the end, verify the system requirements by the
use of models and validate that the system under test meets
the customer’s needs. Additionally, our assumption is that in
the long run this approach will reduce the costs of regression
testing and the developer efforts will be channeled to, e.g.,
exploratory and negative testing.

Writes

Writes
ModelsSUT

Tester/
Developer

Reads

GraphWalker Executes

P— Tests CANoe

Generates
Executes

Implements

Uses

Gwlnterfacejar|— Requests MBT.dIl

Confirms

Fig. 1. Context diagram for CANoe*

II. PROPOSED SOLUTION

As CANoe presently executes automated test cases in a
sequential manner with no notion of randomness, CANoe* is
the proposed solution to solve the challenge at hand. CANoe*
is the result of integrating the GraphWalker open source tool
with CANoe where these two tools then communicate through
an interface in order to generate test cases from the model.
The test cases are then executed in CANoe to test the system
functionality. However, in addition to the above tools, the
solution includes a model and its implementation. There are
three major steps involved in writing tests with CANoe™ as
can be seen in Fig. 1;

CANoe* models the functionality that is to be tested using
the yEd desktop application [6]]; a model of the expected
behavior of the system under test is drawn as an extended finite
state machine with states and transitions. The saved model is
provided to the GraphWalker tool as an input of the expected
states, transitions and the values that need to be tested.

GraphWalker is connected to CANoe by a communication
bridge and for the purpose of this communication, the gener-
ated interface is implemented. GraphWalker provides various
traversing strategies, we used 100% edge traversing strategy
to cover the complete model. A model entails one or more
functionality, if we cover the complete model then we obtain



100% functional coverage by the generated test cases for the
intended functionality.

CANoe includes a simulated CAN network, and a database
which holds the values of the network. The simulated CAN
network in our context is the system under test. CANoe is
responsible for the test framework and it is the test driver that
we use to test the system under test. We used a .NET test
module and its libraries provided by CANoe to implement
the test module. The test module is the implementation of the
adapter to the SUT, which should correspond 100% with the
interface generated by GraphWalker in the previous step.

GraphWalker uses random functions to generate random test
sequences from the model and hence, when it is executed,
sends a request for a given function to be executed. While
sending the request, it has the expected value appended to
it. When the function to be executed in the test module is
found, a comparison is made between the expected value from
the model and the actual value from the CANoe database. A
confirmation is sent back to GraphWalker to affirm that the
functionality was executed and then CANoe produces a test
report showing the verdict of the execution as pass or fail.

III. ANALYSIS OF RESULTS

The prototype that was evaluated made use of sample
ECU functionality that was simulated in the CANoe software.
Arcuri and Briand [[1] notes that the probability distribution
of a randomized algorithm can be analyzed by running such
an algorithm several times in an independent way, and then
collecting the appropriate data about its results and perfor-
mance. Due to the reason that CANoe* contains a notion of
randomness, we evaluated the prototype ourselves as opposed
to using human subjects. Coverage data of the two tools was
collected and analyzed. We state our hypotheses as follows:

Null Hypothesis: CANoe is significantly better in func-
tional coverage compared to CANoe*, i.e., Hy : Cov. >
Cov.+

and,

Experimental (alternative) Hypothesis: CANoe* is sig-
nificantly better in functional coverage compared to CANoe,
ie., Hy : Cov. < Cov +

A one-tailed test was used because our hypothesis is that
our improvement, i.e., CANoe*, would be better.

The sample functions were executed in 240 runs for each
tool while recording the number of passed, failed and total
test cases with respect to 100% edge traversing strategy of
the model. Within these runs, fault injections were introduced
of which data was collected. The collected data was analyzed
in five scenarios as can be read from the full description [3].
One scenario presented here is the custom fault where a fault
was injected in a door lock functionality that is responsible
for unlocking a door. This fault would only be triggered if
the unlocking feature of the door was executed two times
successively, if any other action was executed between the
clicks, the fault would not be triggered and the system under
test would execute normally with no failure.

A. Evaluation of Results

Here we evaluate the custom fault scenario that showed a
significant difference. This was an interesting observation as in
CANoe™ the affected functionality failed during all the runs but
surprisingly CANoe reported 100% passed test cases without
a single fault reported. This can be attributed to the fact that
CANoe executes sequentially hence is not designed to reveal
such faults.

A Shapiro-Wilk test for normality was applied (p < .001,
a < 0.05) rejecting the null hypothesis. As a consequence,
the Mann-Whitney U test was used which rejected our null
hypothesis (U = 30,Z = —9.9801,p < 0.05,» = 0.91).
The test was used to evaluate the difference in the functional
test coverage of the two tools and a significant difference was
discovered.

The effect size calculations resulted in Alg = 0.0083, hence
indicating a large effect size. In short, in more than 99% of
the cases CANoe* will, from a probabilistic point of view, be
the winner when compared to CANoe.

IV. CONCLUSION

Our contribution is the prototype of the tool CANoe*, which
was developed with the aim to investigate if there is an
increase in the functional coverage of model-based test cases
with our new tool (CANoe*) as compared to the current way
of working, i.e., using only CANoe. Sample functions were
developed and simulated in the CANoe software.

The sample functions were executed with the use of the two
tools to determine which was best at uncovering faults and the
fault finding capability. The functions were executed multiple
times, i.e., 480 runs, while injecting faults to assess the fault
finding capabilities for each of the tools. For each run, the
number of failed test cases were recorded and later used in the
analysis. The paper was reported as a controlled experiment,
and the collected data was analyzed using analytical statistics.

We were able to reject the null hypothesis in favor of the
alternative hypothesis as the results indicated the superiority
of model-based testing approaches like CANoe* over testing
methods like CANoe.

All data and source code is available at https://bitbucket.
org/canoeplus/canoeplus.

REFERENCES

[1] A. Arcuri and L. Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE 11,
pages 1-10, New York, NY, USA, 2011. ACM.

[2] CANoe. https://vector.com/vi_ecutest_en.html. Accessed: 2016-12-07.

[3] R. Darwish and N. L. Gwosuta. A controlled experiment on coverage
maximization of automated model-based software test cases in the auto-
motive industry. Master’s thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, Sweden, 2016. 73.

[4] D. Fodor and K. Enisz. Vehicle dynamics based ABS ECU verification
on real-time hardware-in-the-loop simulator. In /6th International Power
Electronics and Motion Control Conference and Exposition (PEMC),
pages 1247-1251, Sept 2014.

[5] GraphWalker. http://graphwalker.github.io. Accessed: 2016-12-07.

[6] yED. https://www.yworks.com/products/yed. Accessed: 2016-12-29.


https://bitbucket.org/canoeplus/canoeplus
https://bitbucket.org/canoeplus/canoeplus
https://vector.com/vi_ecutest_en.html
http://graphwalker.github.io
https://www.yworks.com/products/yed

	Introduction
	Proposed Solution
	Analysis of Results
	Evaluation of Results

	Conclusion
	References

