
Capturing Cost Avoidance through Reuse: Systematic

Literature Review and Industrial Evaluation

Mohsin Irshad

Blekinge Institute of

Technology

SE-371 79 Karlskrona,

Sweden

mohsin.irshad@bth.se

Richard Torkar

Chalmers University of

Technology

SE-412 96 Gothenburg,

Sweden

richard.torkar@gmail.com

Kai Petersen

Blekinge Institute of

Technology

SE-371 79 Karlskrona,

Sweden

kai.petersen@bth.se

Wasif Afzal

Malardalen University

Box 883, 721 23 Västeras

Sweden

wasif.afzal@mdh.se

ABSTRACT
Background: Cost avoidance through reuse shows the ben-
efits gained by the software organisations when reusing an
artefact. Cost avoidance captures benefits that are not cap-
tured by cost savings e.g. spending that would have in-
creased in the absence of the cost avoidance activity. This
type of benefit can be combined with quality aspects of the
product e.g. costs avoided because of defect prevention.
Cost avoidance is a key driver for software reuse. Objec-
tives: The main objectives of this study are: (1) To as-
sess the status of capturing cost avoidance through reuse in
the academia; (2) Based on the first objective, propose im-
provements in capturing of reuse cost avoidance, integrate
these into an instrument, and evaluate the instrument in the
software industry. Method: The study starts with a sys-
tematic literature review (SLR) on capturing of cost avoid-
ance through reuse. Later, a solution is proposed and eval-
uated in the industry to address the shortcomings identified
during the systematic literature review. Results: The re-
sults of a systematic literature review describe three previous
studies on reuse cost avoidance and show that no solution,
to capture reuse cost avoidance, was validated in industry.
Afterwards, an instrument and a data collection form are
proposed that can be used to capture the cost avoided by
reusing any type of reuse artefact. The instrument and data
collection form (describing guidelines) were demonstrated
to a focus group, as part of static evaluation. Based on
the feedback, the instrument was updated and evaluated
in industry at 6 development sites, in 3 di↵erent countries,
covering 24 projects in total. Conclusion: The proposed
solution performed well in industrial evaluation. With this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE 2016 Limerick, Ireland

c� 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

solution, practitioners were able to do calculations for reuse
costs avoidance and use the results as decision support for
identifying potential artefacts to reuse.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
Measurements, Cost Avoidance, Cost Savings

Keywords
Cost Avoidance, Cost Savings, Software Reuse

1. INTRODUCTION
Software reuse helps the organisations in decreasing costs

while still meeting certain quality requirements [1] [2]. How-
ever, introducing a reuse culture in an organisation is dif-
ficult because software reuse is concerned with various as-
pects of software development [3]. Technical, management
and business aspects of software reuse are still being re-
searched [4] [5]. The measurements related to software reuse
have been reported in various studies [6] [7]. A study by
Frakes [8] described di↵erent types of reuse metrics such as
costs related to software reuse, levels of software reuse, mea-
suring reusability, etc. These measurements provide a foun-
dation for building, maintaining and improving the reuse
processes and reusable products.
As the practitioners develop a software product they come

across problems that they have solved in the past. In these
cases, they often reuse the solution they had developed in
the past or they reuse a known solution from someone else
[9]. This type of reuse, which is not planned in advance, is
known as pragmatic (ad-hoc) reuse [10] [11]. Studies have
shown that a considerable reuse takes place in the form of
pragmatic reuse [9] [12]. This type of reuse takes place in a
white-box way (needs modification before reusing) [13]. The
e↵ort spent on making this component reusable and costs
avoided (in the form of money or e↵ort) because of this reuse
instance are hard to know in advance. The systematic reuse
approaches, such as product lines [14], have been proposed,
but ad-hoc reuse takes place on a frequent manner [9] [12].

A variety of software reuses cost models already exist in
literature [15] [16]. Poulin [16] categorized these cost models
into three types: Return on Investment models, Cost Benefit
Analysis models and Cost Avoidance (CA) models. These
models provide solution to di↵erent problems. Return on
Investment models measure benefits for organisations that
have already invested in reuse processes. Cost-Benefit mod-
els are used for making decisions on reuse investments and
these are useful for management in making optimal decisions
about software reuse. Cost avoidance models help to calcu-
late the costs avoided by reusing an artefact. These have
a limited scope as these are only applied after the artefact
has been reused and these models (CA) do not impose any
restriction on reuse practices or investments.

In the context of this study we have followed the defini-
tion of cost avoidance provided by Poulin, who defines cost
avoidance as the financial benefits in terms of money that
the organisation has prevented to keep from occurring [16].
This prevention can take place because of ad-hoc reuse or
improvement in quality of software, thus causing fewer bugs
or buying third party product at lesser cost than quoted
in contract. An example of cost avoidance is provided in
Section 2.

The cost avoidance through reuse is di�cult to measure
because of two reasons: (i) Cost avoidance usually takes
place in pragmatic software reuse (also known as ad-hoc
reuse) and it is hard to predict how much costs can be
avoided. In the systematic reuse process or in software prod-
uct lines the reusable artefacts can be already identified,
their modification costs can be estimated and these reuse
instances can be planned by the organisations. (ii). Reuse
artefacts, as presented in literature, are of various di↵erent
types [17]. With the introduction of various types of reuse
artefacts, measuring cost avoidance through reuse can be-
come di�cult. There are no agreed upon guidelines that can
help organisations in measuring reuse cost avoidance. This
study attempts to address these issues. The contributions
of this study are:

• Contribution 1: To investigate the reuse cost avoid-

ance measurement solutions present in the literature.

• Contribution 2: To identify an artefact-independent

method that could help the organisations to measure
reuse cost avoidance (CA).

• Contribution 3: To evaluate the identified artefact-

independent method, in the industry, for measuring
cost avoidance (CA) through reuse.

It is worth mentioning that the study is not aimed at un-
derstanding general reuse culture or processes, it is limited
to cost avoidance measurements only.

Section 2 describes the di↵erent aspects of cost avoidance.
In the first phase (Section 3) of the study we investigate the
state of the art in relation to reuse cost avoidance. This is
done with a systematic literature review on software reuse
cost avoidance. The recommendations from the first phase
are presented in Section 4. Based on the recommendations, a
cost avoidance measurement instrument is proposed in Sec-
tion 5 . The instrument is evaluated dynamically by its
application to 24 industrial projects, described in Section 6.
Section 7 discusses the results and the approach used for
calculating reuse cost avoidance. Threats to the validity of
the study are described in Section 8. Section 9 concludes

the paper. An overview of the complete study is shown in
Fig. 1.

Figure 1: The various steps in this study.

2. BACKGROUND:
We provide the definitions important in the context of

this study, and thereafter provide an example of cost avoid-
ance through reuse and make the di↵erence to cost savings
explicit.

2.1 Definition of terms
The terms “cost savings”, “cost avoidance” and “return on

investment (ROI)” are describing di↵erent types of benefits.
The “cost savings” are the benefits that take place when an
action reduces the costs. These savings are usually planned
and can be measured more easily. “Cost avoidance” takes
place when an action prevents (avoids) the future costs to
happen. These are the financial benefits gained without ex-
pending resources [18]. The “return on investment (ROI)”
describes the ratio of financial benefits (e.g. profits) achieved
from an investment. The cost avoidance benefits are often
di�cult to measure because of the ad-hoc nature of software
reuse.
Cost avoidance is frequently discussed in scientific liter-

ature [19] [20] [21]. However, a variety of di↵erent defini-
tions of cost avoidance exist in the literature. Laszlo de-
scribed cost avoidance, in context of total quality manage-
ment (TQM) as the costs avoided because of improvements
in the quality of the product [22]. In a study on industry-
university collaboration, Denis et al. described cost avoid-
ance as the costs that did not incur because of the indus-
try university collaboration [23]. Ashenbaum di↵erentiates
between “cost savings” and “cost avoidance” in a study on
supply chain management [18]. According him, if there is
an increase in output without any additional resource ex-
penditures, then the amount that would have been spend to
reach this increased output is the cost avoided. He describes
an example where purchase price is lower than the “quoted”
price of a product in the vendor contract, then this type of
savings (quoted price - purchased price) are known as costs
avoided.

In software engineering, Jacobson et al. describes reuse
cost avoidance as a metric that reflects the reduction in the
products development cost because of reuse [24]. Accord-
ing to Frakes, reuse cost avoidance is the reduced cost of a
product because of software reuse [8]. Guerrieri, et al. de-
scribed cost avoidance as the costs that are avoided each
time a reusable component is reused [25]. Lim di↵erentiated
between the cost avoidance from cost savings in an example
in his study on software reuse [26]. According to him the
costs avoided through reuse are the type of savings, in terms
of money, that organisations were suppose to spend, but did
not have to spend because of reusing an artefact.

2.2 Example of Cost Avoidance through reuse
Consider a hypothetical software organisation selling solu-

tions to multiple customers. Assume that in the year 2012,
the organisation spent $63,000 on the development of a cus-
tomer project. Next year, in 2013, another customer project
was completed that reused components from the previous
project (from 2012) but needed $60,000. See the Table 1 for
detail.

Table 1: Development Costs Per Year.
Year Lines of Code Cost / line of code Total Costs
2012 90,000 $ 0.70 $ 63,000
2013 80, 000 $ 0.75 $ 60,000

Here a project manager can claim that savings were $
3,000 ($ 63,000 - $ 60,000) when the organisation reused the
components from the previous project. However, the project
manager discovers that second project uses 10, 000 lines of
code fewer than in the first project. So without reuse the
organisation would have to write 10,000 additional LOCs.
Due to increase in the salary of developers and taxes the
development cost per line of code was also increased.
Cost without Reuse = cost per line of code (in $) X Lines
of Code (LOC)

Cost without Reuse = $ 0.75⇥ 90, 000 LOC = $ 67, 500
(1)

Therefore,

Costs Avoided = $ 67, 500 � $ 60, 000 = $ 7, 500 (2)

The project manager can see that cost savings on the second
project were $ 3,500, but cost avoidance through reuse was
$ 7,500. The absence of reuse would have decrease the cost
savings and cost avoidance. Therefore, the cost savings and
cost avoidance describe di↵erent types of benefits to the user.

3. PHASE I: SYSTEMATIC LITERATURE
REVIEW

In Phase I, a systematic literature review (SLR) was per-
formed to gain understanding of state of the art with respect
to measurement of cost avoidance through reuse. Kitchen-
ham and Charters describe a number of steps for performing
an SLR in [27], where they also list a number of benefits of
conducting an SLR. The study was carried out based on the
guidelines proposed by Kitchenham and Charters [27]. In
the following sections we detail the research questions, data
collection and results obtained from SLR.

3.1 Research Questions for SLR
In order to identify solutions for the measurement of cost

avoidance through reuse (as present in literature [8] [24]),
the following research questions were posed:

• RQ 1: Which studies describe a solution to calculate
the cost avoided through reuse in a direct way?

• RQ 2: What metrics are required in order to apply
each of these models?

• RQ 3: What are the limitations of the models?

• RQ 4: How have the models been evaluated?

3.2 Search Strategy
To construct the search terms used for the study the fol-

lowing steps were performed:

1. Develop and list the search terms based on the research
questions.

2. From the list of terms, the synonyms of terms were
added in the list of search terms.

3. New search terms were collected by changing the plu-
rals to singular forms and singular to plural forms.

4. New search terms were collected by gathering key-
words from abstracts and conclusions from a sample
of relevant research papers.

5. New search terms were collected by browsing through
grey literature (technical reports, non peer reviewed
articles, and webpages)

6. New search terms were constructed by using Boolean
OR with synonyms of search keywords and by using
Boolean AND for combining di↵erent search terms

7. The search terms were piloted on the IEEE Xplore
database. This piloting of the search strings helped in
improving the quality of search terms.

All search terms, as used with di↵erent combinations, are
listed in Table 2.
Di↵erent databases were selected to identify the relevant

studies based on the guidelines proposed by Kitchenham
and Charters [27]. The databases are: ACM Digital Li-
brary,IEEE Xplore, SpringerLink, ScienceDirect, Engineer-
ing Village, Wiley InterScience, ISI Web of Science.
Dyb̊a and Dingsøyr’s procedure [28] was followed for man-

aging citations during this study. Endnote was used for stor-
ing the citations and removing any duplicate studies in the
initial phase. During later stages of the study, spreadsheets
were maintained for the each subsequent steps.

3.2.1 Study Selection Criteria

Keeping in mind the research objectives of this study,
‘Cost Avoidance through reuse’ [16] was selected as the main
focus. Study selection criteria were divided into exclusion
criteria and inclusion criteria.
Inclusion Criteria

• Discusses cost related aspects of software reuse with a
focus on calculating cost avoidance.

• Should be published in a journal, conference or work-
shop (not necessarily peer reviewed!)

• Describes a validation of the presented cost avoidance
model, i.e an empirical study.

• Any type of methodology used in the study is valid,
e.g. literature review, systematic review, industrial ex-
perience, case study or an experience report on reuse
cost estimation models.

Exclusion Criteria Any study not related to Software
reuse and cost avoidance was removed. The studies that
were in a language other than English were removed. If the
full text of the study was not available then the study was
not included.

3.3 Data Collection
A data collection form was developed for extracting the

information from the selected studies. The data extraction
form capturing general information (article title, authors,
references), context information (industry or academia, study
of professionals or students), and information related to the
measurement instrument and its evaluation (such as met-
rics, outcome of evaluations, and so forth). The number
of papers excluded at di↵erent stages of the inclusion and
exclusion process are shown in Fig. 2. After the first ap-
plication of the inclusion and exclusion criteria a snowball
sampling step has been performed (backward snowballing)
[30] to determine potentially relevant articles from the ref-
erence lists. The objective of this review was to find studies
that described the measurement of costs avoided through

Table 2: Results after initial search and search
strings.
Search term #papers
Software Reuse Cost Model 1545
Reuse Cost Model 3069
Software Reuse Cost Measurements 327
Software Reuse Cost Measuring Framework 172
Software Reuse Cost Estimation 567
Software Reuse Savings 678
Measuring Software Reuse Benefits 147
Software Reuse Economics 470
Reuse Economics 1414
Software Reuse Benefits 2326
Reuse Benefits 2560
Software Reuse Cost Avoidance 130
Reuse Cost Avoidance 400
Reuse Return On Investment 572
Software Reuse Return On Investment 422
Reuse Finance 180
Reuse Cost Estimation 927
Reuse Cost Assessment 843
Software Reuse Cost Estimation 369
Software Reuse Cost Assessment 189
Software Reuse Business 1777
Reusability Cost 1989
Software Reuse Cost Measurement Method 147
Software Reuse Cost Measurement Technique 118
Software Reuse Cost Reduction 490
Software Reuse Price 119
Tracking Reuse Cost 196
Monitoring Reuse Cost 413
Reuse Cost Benefit 1249
Software Reuse ROI 972
Software Reuse Financial Aspect 43
Total 24820

Figure 2: Multi-step filtering of studies and final
number of primary studies.

reuse in software development. Therefore, these 30 papers
were manually reviewed in-depth. While checking the com-
plete paper it became apparent that the focus was not on
cost avoidance, hence finally only three models were found
that directly addressed the costs avoided through software
reuse. These three primary studies were presenting measure
for capturing cost avoidance [33, 16, 34].
These three articles had one thing in common; they pro-

vided a mechanism to measure the costs avoided through
reuse. In addition, there were two other papers that could
be seen as primary studies, [31] and [32], but these papers
were very neatly summed up in [16] and, hence, we focused
on the latest reference in this case.
Since only three primary studies were identified therefore

quality assessment was done in a simple way. The details of
quality assessment are not described in this study and these
are available on web [29]. The other details obtained from
each step of SLR are also provided on the web [29].

3.4 Results from SLR

3.4.1 Models to capture cost avoidance (RQ1)

In the following paragraphs a brief analyses of the three
primary studies[16, 33, 34] are provided.
Poulin’s et al. model : The model was originally pro-

posed in a study [31] and further described by Poulin in [16].
The model is applicable on individual projects or individ-
ual teams and is divided into two ‘phases’. One phase is
concerned with costs avoided during development and the
other phase focuses on costs avoided during maintenance.
According to this model, the direct cost avoided (DCA) can
be estimated by the following equation:

DCA = RSI ⇥ (1�RCR)⇥NCC (3)

where RSI includes completely unmodified reused soft-
ware lines of code, RCR is the relative cost of reuse (they
use a factor of 0.2 i.e. cost of reuse) and, finally, NCC is
new code costs. If the costs to develop a new component
equals one unit of e↵ort then the Relative Cost of Reuse
(RCR) can be defined as “portion of this e↵ort that is re-
quired to reuse a similar component without modification

(black-box).” Here without modification means searching,
identifying, integrating and testing the reusable artefact [16].
Additionally, Poulin et al. calculate the service cost avoid-
ance (SCA) of the reused software as:

SCA = RSI ⇥ ER⇥ EC (4)

where ER is the rate of errors reported during mainte-
nance/service and EC is the cost incurred in reporting er-
rors and retesting fixes. Poulin et al.’s final equation for
reuse cost avoidance equals:

RCA = DSA+ SCA (5)

This model assumes that the users are aware of the costs per
lines of code. The model is based on lines of code; therefore,
no other software artefact can be measured with this model
and, hence, points at a weakness with the model.

Defense Information Systems Agency : United States
Defense Information Systems Agency has proposed a model [33]
similar to Poulin’s et al. model [16]; in fact [33] could be seen
as a more complex variant of that model. The following
equation is used as a basis for this model:

Cost Avoided = R⇥ (En� Er)� COTS (6)

whereR is the costs of new custom code (in personnel hours).
En is the estimated e↵ort without reuse, and calculated by
a ⇥ L, where a is the relative cost of writing new code in
personnel hours/lines of code, and L is the number of lines
of new custom code, default for En is set to 1. Er is the
estimated e↵ort with reuse, also calculated by a ⇥ L, how-
ever, a, the relative cost of verbatim reuse, defaults to 2,
and L is the lines of verbatim reuse code. Finally, COTS is
the direct cost of buying the component (no mention of the
indirect costs, e.g. learning how to use the component, can
be found in [33]).

Unfortunately, this model has similar limitations as the
previous model since it is based on, among other things, the
number of lines of code and does not take into consideration
any other forms of software reuse.

Amar and Co↵ey’s Model : Amar and Co↵ey provide
three di↵erent models for measuring reuse savings [34]. They
take into consideration the processes present in an organisa-
tion (ad hoc or systematic) and based on the processes one
of the proposed formulas is used. The simplified formula for
ad hoc reuse is thus:

(7)

% savings =

"
SR� (TLR+ U)⇥

N
i

BUILD
� SR

⇥ MOD
BUILD

#
⇥ 100

where SR is the search hit rate (percentage of i that
yielded a positive search result), TLR is the time to locate
each potentially reusable item, U is the time to understand
the suitability of each potentially reusable item (for the cur-
rent task), N is the number of items that were examined,
including each of the items that finally was reused, i is the
number of attempted instances of reuse, MOD is the time to
integrate/modify the reused item for current purposes and,
finally, BUILD is the time to build an element from scratch.

First, here they assume that organisations collect metrics
such as search hit rate, time to understand suitability, etc.
Secondly, this method provides a value regarding search hit

rate equaling to 20%, though the reason behind this deci-
sion has not been made explicit. The above critique, limits
the model’s application, as most organisations are not inter-
ested in collecting complex metrics as it can be considered
an overhead for the organisation [35]. This model also lacked
clarity and necessary details such as how to collect data and
what should be counted as reuse. However, it is clear, that
the focus of the article was to provide a model for CA and
validating the model in industry is not discussed (as required
by the inclusion criteria).

3.4.2 Metrics Required (RQ2)

Two models were based on the number of lines of code [16,
33]. In order to apply these models, one has to know the
number of lines of codes reused and the total size of the
product in terms of lines of code. The third model, [34], was
mainly based on personnel hours as a basic metric; however,
it also included a number of corresponding metrics based on
several other data points, e.g. search hit rate and number of
attempted instances of reuse.

3.4.3 Assumptions of the Models (RQ3)

Reuse artefacts, as presented in literature, are of various
di↵erent types [17]. The first thing to consider regarding
the limitation of any model is to investigate the types of
artefacts it can measure. Table 3 shows the artefacts each
model can measure [16, 33, 34]. In some cases it was di�cult
to know whether the artefact could be measured or not, and
in such cases ‘⇠’ is used as an indicator.

3.4.4 Evaluation (RQ4)

By empirically evaluating in industry researchers can find
out the limitations and advantages of their suggested ap-
proaches. The three primary studies were checked with re-
spect to evaluation performed in industry. Both,Poulins [16]
and DoDs [33], have been evaluated in industry (IBM and
US Department of Defense, respectively), however details of
the evaluations were missing. We could not find any indi-
cations that [34] contained a description of an evaluation in
industry.

3.5 Conclusions from SLR

Table 3: Artefacts measured by models [17]. (
p

indi-
cates measures , ⇠ indicates uncertainty, � indicates
do not measure)
Artefacts [16] [33] [34]
Algorithms � � ⇠
Architectures � �

p

Data � �
p

Design � �
p

Documentation � �
p

Estimates � � �
Human interfaces � �

p

Knowledge [36] � � ⇠
Models � �

p

Plans � �
p

Requirements � �
p

Service contracts � �
p

Test cases � �
p

Code
p p p

In previous sections an analysis on the various findings
from the SLR was presented and, hence, the following con-
clusions were drawn accordingly:

• Lines of code, as a metric for calculating CA, cannot
measure di↵erent types of reuse artefacts. Bhragv et
al. have identified at least 14 di↵erent artefacts that
can be reused therefore lines of code is not a relevant
metric for many reusable artefacts [17]. Table 3 lists
di↵erent reusable artefacts.

• The basic formula, for measuring the costs avoided
through software reuse remains the same in all models,
i.e. Costs without reuse - Costs with reuse. All models
calculate reuse cost avoidance by the same basic for-
mula; however, the metrics used in the formula di↵ers
between models. Two models used lines of code as a
basic measure while one model used personnel hours
as a basic measure for calculating software reuse. No
temporal variable of costs was included, which is usu-
ally the case with cost-benefit reuse models (except for
Poulin et al.’s model [31] that addresses net present
value).

• No guidelines on what metrics to collect, for calculat-
ing cost avoidance through reuse, and how to collect
metrics, related to a specific model, were found. The
collection of metrics can cause problems for industry
practitioners e.g. problems in using function sizes [38]
and di↵erent definitions of lines of code [39] are well
documented in the literature. None of the models pro-
vided guidelines.

• Only a limited number of studies is present on the
industrial evaluation of models capable of calculation
cost avoidance through reuse. One primary study was
not evaluated in industry yet [34]. Literature contains
evaluation experiences of two models only ([16, 33]).
In an engineering discipline, it is important to evalu-
ate the solutions in the industrial settings [40]. Indus-
trial evaluation of studies acts as template and guide-
lines for other organisations that want to address sim-
ilar problems. In particular, other aspects such as the
origin of the reuse, e.g. COTS vs. Open source de-
velopment, play a role, as well as the product where
the reuse was taking place, and the point of time in
which the reuse took place. Thus, these aspects need
to be captured as well. This allows to retrospectively
reflect and analyse the reuse practices in an organisa-
tion. In short, the reuse context has to be understood
and captured, as context is generally important when
interpreting data [41] [42].

• No limitations related to the models were reported.
Negative findings help practitioners in evaluating a
model before its usage and, hence, it can be seen as
a major drawback associated with these models.

4. RECOMMENDATIONS FROM PHASE I
The research gaps identified (in Section 3.5) were trans-

formed into recommendations for the next phase of the study.
The recommendations are described below.

• Propose a metric that can calculate cost avoidance of
di↵erent types of reusable software artefacts not de-
pendent on measuring lines of code. Lines of code are

not relevant for many artefacts that are reused in in-
dustry.

• Provide guidelines on the selection and collection of
metrics required to calculate cost avoidance through
reuse and the possibility to contextualise the collected
metrics. There are no guidelines present in litera-
ture that can help organisations in measuring the cost
avoidance through reuse and how to collect metrics
required for this measurements.

• Provide a simple and intuitive instrument fulfilling the
goal of understanding past cost avoidance as input for
decision making for future cost avoidance. Simplicity
here refers to only collecting a limited number of mea-
sures needed to achieve the goal.

• Perform industrial evaluation of measurements for cost
avoidance through reuse. Only two articles were found
in literature that mention industrial validation of mod-
els, though the details of validation were missing. Both
these articles ([16, 33]) were based on lines of code.

The solution proposed in the Phase II (in Section 5 and
Section 6) tries to incorporate these recommendations.

5. PHASE II - PROPOSED INSTRUMENT
The next section proposes (i) an instrument that is ap-

plicable to all types of reusable artefacts and the solution
also provides (ii) guidelines on how to collect the required
metrics, used in the instrument.

5.1 Selection of Metrics
In a study on industry relevant research, Kanso et al.

identified “Simplicity” and “Usability” of a solution as vital
aspects to consider when developing solution for the indus-
try [43]. The successful technology transfer relies on the
solution’s simplicity and ease of use. Gencel et al. claimed
that organisations have limited budget and resources for the
collection of metrics [44]. It is important to select the met-
rics that are simple and easy to use. These two key inputs,
(i) simplicity of solution and (ii) lack of resources for metric
collection, were considered during the development of the
instrument.
Studies have indicated the importance of reuse metrics in

order to drive the reuse goals [45], and one of the few mea-
sures, common amongst most organisations, is ‘personnel
hours’. Many organisations collect personnel hours spent on
tasks performed, as this measure is simple and easy to col-
lect, hence, we believe that an instrument should use that
metric as a foundation. Using personnel hours would also
allow us to develop a more abstract method that could be
used to measure costs avoided on every type of artefact,
e.g. reuse of test cases or development environments (a de-
velopment environment can consist of e.g. development kits
such as frameworks, application servers, databases and build
scripts). An added benefit of using this metric is the ease in
which we can collect it and that no major guidelines are re-
quired for collecting it. A similar approach was used by [34]
in their study.

5.2 The Instrument
The basic inspiration of the formula was taken up from

Poulin’s work [16]. However, a fundamental di↵erence be-
tween his and our proposal is that instead of dealing with

lines of code, the new formula deals with personnel hours
spent on reuse artefacts. Hence, we claim that the cost
avoidance through reusing any software artefact can simply
be measured using:

Cost Avoided = (O � I)⇥H (8)

Where O is the personnel hours spent on any artefact de-
veloped in-house, I is the personnel hours spent on, e.g.
identifying, understanding and integrating an artefact to be
reused and, finally, H is the cost (in any currency) of one
personnel hour of work.

In many cases historical data is available if an artefact
is an internal product of the organisation. This data can
be used to establish personnel hours spent on an artefact
when developed in-house, i.e. the factor O. The factor I on
the other hand includes the time spent on, e.g. searching,
understanding, integrating and testing the artefact, and the
sum of all these phases is used as time spent on reusing the
artefact. In a case, where historical data is not available an
expert opinion can be utilised. Studies have shown that the
expert opinion is a reliable method in software development
when data is missing [46] [47] [48].

5.3 Solution
As a part of solution, a worksheet was developed that was

generic enough to accommodate any organisation without
needing to make any changes in it. This worksheet was then
used to collect data and understand the context of reuse.
The context of the reuse helps the practitioners in under-
standing the applicability of the reused artefact for future
reuse opportunities. Table 4, shows the basic data fields
that were collected.

This instrument should be used after the reuse. During
the initial phases we do not know how much time (person-
hours) would be spent on identifying an artefact (in prag-
matic reuse [10]), changing it to fit our needs and product
architecture and time required for its verification.

6. EVALUATION IN INDUSTRY

The evaluation was done in two steps, first conducting a
static evaluation (collecting feedback from the practition-
ers), followed by a dynamic evaluation (application of the
instrument to reflect on the reuse practices of the organisa-
tion), as suggested by Gorschek et al. [40].
Both dynamic and static validation were carried out at a

large telecommunication company on twenty four di↵erent
projects, in six globally distributed sites.

6.1 Static evaluation
The static validation was influenced by the method de-

vised by Gorschek et al. keeping in view the industrial rel-
evance of this study [40] . The purpose of static validation
was to get the feedback from the practitioners, with the key
question being how the instrument should be improved be-
fore it is taken into live operation.
A presentation and demonstration, of the instrument and

guidelines for data collection, was made for a focus group
having three designers, one tester and two managers. The
solution was demonstrated with help of example use cases.
The findings were shared with the user. Feedback was recorded
in notes during the meeting.

6.1.1 Results from the Static Evaluation:

Several participants, of the focus group, objected on the
formula used for calculating cost avoidance. They thought
that the formula used should only be based on the time re-
ported on a task and that it should not be based on figures
present in literature since they believed that, for example,
generalised values on the cost of reusing an artefact might
di↵er quite radically from case to case. Therefore, contex-
tualisation was important aspect to assess the similarities
and di↵erences between reuse cases, which resulted in the
proposal of the data collection form shown in Table 4.
Another feedback was to extend the tool in order to eval-

uate the results from several di↵erent perspectives. Various
types of charts, graphs and tables were added in order to
analyse the results achieved by reusing artefacts.
Based on the above feedback, the instrument was updated

to its final form as already presented in Section 5.

Table 4: Data collection guidelines
Attribute Information captured
Case No Listed for keeping track of numbering and for reference in other reports e.g Project Z or

source control number .
Name of the reuse arte-
fact:

The name used for artefact in the organisation e.g Test Scripts, Component X etc.

Category Artefacts can be categorised based on the requirements of organisation. Each organisa-
tion has its own products and these products vary in di↵erent domains. This category is
customisable according to the requirements of organisation e.g Code, Environments etc.

Origin Original product from which the artefact was taken. It can be the name or version which is
used inside the organisation e.g requirements specification Version 1.2.1 of Product X.

Reused in The final product in which software artefact was reused. It can be the name or version which
is used inside the organisation e.g. requirement specification Version 1.0 of Product Z.

Quarter Depends on organisations policy for generating reports. Value of this column can be replaced
by month or year. e.g 2006 Quarter 2.

Hours spent when devel-
oped in-house

Personnel hours spent on artefact when developed in-house e.g 820 hrs. In case where no
historical record of personnel hours is present we may use expert opinion to estimate the
number of hours.

Hours spent on reuse Personnel hours spent on artefact when reused (in identification, understanding, integration
and testing of artefact) e.g. 39 hrs.

Comment For providing any useful comments. Used if some clarification needs to be done.

6.2 Dynamic evaluation
The next phase was to dynamically evaluate this instru-

ment in an industrial environment, i.e. to actually use this
instrument in a live setting. The dynamic validation was di-
vided into three steps. In the first step the instrument was
used at one site in one project. In the second step the in-
strument was used at one site in three projects and, finally,
in the third step the instrument was used by several remote
sites for reporting their reuse cases and the cost avoided
when reusing artefacts. In total 24 projects were involved
in the dynamic validation. The steps followed during the
dynamic validation are described next in more detail.

6.2.1 Initiation

A tool was developed, which implemented the instrument,
for managers or reuse drivers to collect data from multiple
sites. This tool was in the form of a spreadsheet document
with multiple worksheets, a sheet named after each indi-
vidual site. An analysis, part of tool, was performed from
various aspects e.g. cost avoided per site, total cost avoided
at all six participating sites, artefacts which avoided costs
the most, etc. The snapshot of the tool is available on web
[29].The worksheets, as presented in Table 4, take care of
four di↵erent categories, i.e. code reuse, document reuse
(test cases, documentation, etc.), reuse of frameworks, and
reuse of a development environment; however, other types
can easily be added if needed. Each site has a resource (reuse
driver) assigned to collect and report data back to the main
site. It was noted that negligible amount of time was taken
by the reuse-drivers for data collection.

6.2.2 Data Collection and Analysis

Data collection was executed on six di↵erent sites, which
were geographically spread (Sweden, Netherlands, and China).
An e-mail was sent to the reuse drivers of each of these sites
to report the reuse cases. The data of reuse activities was
collected for three consecutive months (March–May). The
required data was collected and reported in time by the reuse
drivers. This indicates the convenience and negligible costs
associated in collection of this metric i.e. personnel-hours.

The analysis of data was carried out using the developed
tool, and involved measuring the percentage savings, type
of reuse artefact which was extensively reused, time taken
to make the artefact reusable and total cost avoided at each
individual site, as well as the combined cost avoided. The
costs for data collection were not included as the projects
were already completed and the amount of time spent on
reusing any artefact was already known. The time taken for
collecting the data was of short duration (1 personnel-hour
per project).

The main aim of the dynamic validation was to judge the
performance of the instrument and the focus was not on the
reuse processes at the various sites. It also demonstrates the
potential of what can be learned from the analysis.

6.2.3 Results from the Dynamic Validation

The results of the dynamic validation showed that the
reuse of frameworks was responsible for most of the costs
avoided (nearly 75% of the total savings). However, most
number of reuse instances was reported from the category
‘reuse of environment’. Table 5 contains the results from the
dynamic validation.

The reuse of an environment took the least amount of

time and development environments were the most reused
artefacts. No case was reported for the reuse of documen-
tation. The possible reasons for this could be the limited
amount of time (three months) or practitioners only focus-
ing on executable artefacts, or artefacts that are directly
related to software development. The reuse of code took
the most amount of time compared to the reuse of other
artefacts.
Di↵erent sources, [49, 16], have claimed that it takes around

20% e↵ort to reuse an artefact when using a black box ap-
proach. In our case, when using white box artefacts, it took,
on average, around 33% e↵ort in order to reuse it (the ef-
fort we are discussing here is in relation to the actual e↵ort
taken to develop an artefact in-house instead of reusing it).
However, there were artefacts which took as much e↵ort to
reuse as it was required to develop them in-house. It was
interesting to find that, in our study, the size of the artefact
had no linear relation to the savings. We noted, however,
that medium-sized artefacts (150–300 estimated personnel
hours) required more e↵ort to reuse, as compared to large
or small artefacts. This pattern was even more evident in
cases where the development environment was reused.
During the validation in industry, suggestions were made

regarding the expansion of the instrument. Some stakehold-
ers wanted it to measure cost avoided in maintenance. Ac-
cording to previous studies costs avoided in maintenance
are the major costs avoided through software reuse [50, 51].
However, the maintenance costs can only be calculated if the
reused software is used for a considerable amount of time, or
can be estimated if enough historical data is recorded and
thus it was decided that this aspect would be incorporated
into the instrument at a later date. The solution would be
to include a state (new development or maintenance) in the
data collection guidelines (see Table 4).

7. DISCUSSION
This section describes di↵erent aspects of the proposed

instrument, provides arguments in support of its use and
also discusses potential problems, which may be present in
the proposed solution.
Artefact Independent Solution: This instrument is

based on all types of artefacts; basically anything created,
used or stored by an organisation during software develop-
ment or software maintenance. A software project can con-
sist of several di↵erent artefacts of various types and at vari-
ous stages. As most of the artefacts can be represented indi-
rectly in terms of personnel hours, the proposed instrument
can be applied on project level as well as on product level.
These artefacts can vary from code-based artefact to prod-
uct documentation. This was highlighted as important from
our initial investigation during the observation and the sur-
vey. In particular, when using a comparable unit of measure
we may compare where reuse is most beneficial with regard
to the artefacts. We may also do correlation analysis to un-
derstand how the reuse of one artefact (e.g. requirements)
may a↵ect the reuse of other artefacts (e.g. frameworks and
components).
Data Collection Guidelines The proposed instrument

contains a data collection form (See Table 4), that can help
organisations to contextualize the findings. This form con-
tains all the necessary fields that are required to use the
proposed instrument. During the dynamic evaluation, this
form was used and practitioners found it e↵ective and simple

Table 5: Results obtained from dynamic validation.
Project Type of

reused
artefact

Man-hours spent
to build the arte-
fact from scratch

Reuse man-
hours spent on
the artefact

Total man-
hours saved
due to reuse

The e↵ort re-
quired to reuse
the artefact

Project 1 Code 24 8 16 33.33
Project 2 Code 24 0 24 0
Project 3 Code 40 16 24 40
Project 4 Code 60 12 48 20
Project 5 Code 80 16 64 20
Project 6 Code 160 40 120 25
Project 7 Code 250 250 0 100
Project 8 Code 1000 250 750 25
Project 9 Framework 40 2 38 5
Project 10 Framework 400 80 320 20
Project 11 Framework 500 120 380 24
Project 12 Framework 1200 200 1000 16.67
Project 13 Framework 4000 100 3900 2.5
Project 14 Environment 20 1 19 5
Project 15 Environment 30 2 28 6.67
Project 16 Environment 40 1 39 2.5
Project 17 Environment 60 10 50 16.67
Project 18 Environment 60 20 40 33.33
Project 19 Environment 60 12 48 20
Project 20 Environment 160 12 148 7.5
Project 21 Environment 160 16 144 10
Project 22 Environment 300 60 240 20
Project 23 Environment 40 20 20 50
Project 24 Framework 120 20 100 16.67

to use.
Inexpensive Data Collection The practitioners appre-

ciated the low-cost and easy to use data collection method
during evaluation. There are no complex metrics that are re-
quired to use this model. Personnel-hours spent on artefact
can be found in historical data. Alternatively expert opinion
can be used to estimate the hours spent on modification of
artefact.

Decision Support Tool The decisions like“what to reuse
?” can be tricky for the practitioners. This instrument was
not designed to do a cost-benefit analysis of reusing an arte-
fact, but the flexibility and simplicity o↵ered by the model
enables the practitioners to use this instrument for decisions
on potential reuse cases. They can use this instrument to
decide on what reusable artefacts can provide most benefits
with regard to cost avoidance. Similarly, organisations use
this data collection form and instrument to evaluate what
artefact type benefited the most in past. From Table 5 it is
visible that decisions can be supported in multiple ways.

• Identify best practice: The projects with the highest
amount of savings can be easily identified, and can be
identified to leverage on their achieved cost avoidance.

• Identify artefacts with highest reuse potential: Identify
artefacts that are more likely to give a high e↵ort saved
on reuse, such as frameworks stand out with regard to
reuse savings.

• Get deeper qualitative understanding of reuse: The
savings of reuse between artefacts vary greatly. In-
vestigating the reasons for the variance in depth, and
being able to explain the reasons, may provide valu-
able scientific results on reuse, and allows to built a
knowledge base within companies as well.

Dependency on Developer’s Productivity Develop-
ers’ productivity can influence the personnel hours spent on
various tasks. An experienced and competent developer can
integrate a component in less time compared to a new and
inexperienced developer. The same assumption can be ap-
plied if the artefact is developed in-house; an inexperienced
developer might require more time to develop the artefact,
compared to the experienced developer. But, according to
[12], the experience level of a developer does not a↵ect soft-
ware reuse costs to a high extent.
Cost Avoidance in Software Product Lines Soft-

ware product lines consist of set of product sharing similar
features developed for the need of specific market [14]. Soft-
ware product lines require prior investment in the form of
development of reusable resources [52]. Software reuse cost
avoidance implies that no resources are expended before the
reuse instance. The return on investment (ROI) reuse cost
models are better suited to calculate the benefits of reuse
in software product lines [52]. However, this instrument can
be used to calculate the cost avoidance of a reuse instance
in software product lines.
Organisational Practices: The following are the as-

sumptions regarding organisational practices that would al-
low a given organisation to apply the instrument: The or-
ganisation needs to decide on a quantitative way to measure
personnel hours in a consistent way. The measure of person-
nel hours is related to the nature of the task, i.e., a di�cult
or a newer task is expected to take more personnel hours.
Secondly, the organisation needs to decide the level of detail
to measure personnel hours, e.g., is it the actual time spent
working on an artefact is important or other activities like
searching, identifying, integrating and testing the artefact?

An organisation can easily extend the instrument to use all
these di↵erent activities e.g. by using separate variables for
identifying, searching, modifications of artefacts. Thirdly, if
multiple personnel are using the same artefact, having dif-
ferent rates for personnel hours (H), the total cost avoided
is simply the sum of the cost avoided by individual persons.

Comparison with related work: As far as we can
tell, only a few previous studies exist, and they are based
on lines of code in two out of three cases [16, 33]. Hence,
we claim our proposed instrument to be better in terms of
coverage of various reusable artefacts. A third instrument,
[34], related to CA, is quite similar to our proposed instru-
ment. However, in terms of the number of variables to be
considered the instrument proposed in this paper appeared
to be easier to apply in terms of the metrics it requires. Fur-
thermore, guidelines for collection of metrics for measuring
reuse cost avoidance were proposed by our study.

Tool implementing the Instrument: The tool sup-
porting the instrument helped in the analysis of reuse cases.
The practitioners were able to compare the results of dif-
ferent sites and identify the sites that had better or worse
reuse cases. Di↵erent reused artefacts were analysed and
compared with each to identify the artefacts that avoided
the maximum costs. Furthermore, the tool generated the
graphs and chart-based reports for the stakeholders to re-
flect on the costs avoided through reuse.

8. VALIDITY THREATS
SLR: In our SLR there were studies of which no full text

was available. These studies were sometimes old and, thus,
hard to locate. This can a↵ect the validity of the findings
from the SLR and [37] has already reported this problem
in literature and its e↵ects. Our study focused on models
that only deal with cost avoidance through reuse. There are
models that can calculate return on investment, cost-benefit
analysis and CA within a single solution (in-directly), even
though they do not mention the term cost avoidance. How-
ever, these models are complex to apply and the metrics are
hard to collect. For these reasons we did not include them
in this study. The bias in the SLR inclusion criteria and ex-
clusion criteria may lead to a case where a study is excluded
even though it should have been part of final results.

It is also apparent that, even though the corpus of studies
was large in the beginning, only very few studies reported
cost avoidance models, which also points to a research gap
and the need to address the restrictions of existing models,
such as their focus on lines of code.

We believe that the SLR provides a good sample of cost
avoidance models in software engineering since we did an
exhaustive search and, in addition, scanned reference lists
on all publications for any additional papers to include in
the study.

Industrial Evaluation: The threats to the external va-
lidity were reduced by involving the industry practitioners.
Our proposed instrument was dynamically validated in one
organisation only; however, since personnel hours can be
considered to be a basic metric, collected by most organ-
isations, the instrument would be easy to apply in other
organisations. The instrument was, nevertheless, tested on
24 projects at 6 geographically distributed sites. This shows
a reasonable level of validation considering two factors: (i)
The details of industrial evaluation for two CA models were
not su�cient while the third model did not describe indus-

trial validation. (ii) Industrial validation is generally a hard
and a time-consuming task.

9. CONCLUSIONS
This study contributes to the knowledge of software reuse

cost avoidance. Varieties of reuse economic models are found
in literature, but only a few studies address cost avoidance
aspects of software reuse. In this study we try to address
the di�culties related to the measurement of cost avoidance
by providing an instrument that is simpler to use and, in
addition, covers several types of reuse artefacts other than
code reuse.
A systematic literature review was conducted to identify

and analyse cost models that can measure cost avoidance
through reuse. Three models were classified as reuse cost
avoidance models. Two of the models were based on lines of
code. The third model was artefact-independent but it was
not evaluated in industry yet. This model required com-
plex metric such as ‘search hit-rate’, ‘ time to understand
the suitability of each potentially reusable item’ etc. The
conclusion of systematic literature review was that there is
lack of literature on measurement of reuse cost avoidance
and there is only one artefact-independent model for mea-
suring cost avoidance. None of the three models described
the guidelines for collecting metrics used in each model.
An instrument to measure reuse cost avoidance and guide-

lines on what to measure for cost avoidance were proposed.
This instrument can measure costs avoided from all kinds
of commonly reused artefacts. Two metrics are required
in order to apply this instrument. The first metric is the
time spent on an artefact when it is developed in-house and
the other metric is the time spent on an artefact in order
to reuse it. Static and dynamic validation of the instru-
ment was conducted in industry. Six di↵erent sites, in three
countries, were contacted to report their reuse cases using
the implemented tool. There were in total 24 projects par-
ticipating. The instrument performed according to the ex-
pectations and users were satisfied with the results. The
instrument, with its accompanying tool and documentation
has been transferred to industry.
The instrument was artefact-independent and uncompli-

cated essence of it makes it useful for the software industry.
Secondly, instrument can be used as a decision support tool
for deciding on what to reuse or which reuse artefact can
give maximum benefits. The dynamic validation pointed
out that the instrument should preferably also accommo-
date the costs avoided in maintenance, when reusing arte-
facts. However, this requires a longitudinal study to collect
further data. The scope of this study was limited to the
direct savings through reused artefacts; but in the future
this instrument could include savings in maintenance when
reusing artefacts.

10. ACKNOWLEDGEMENTS
The research presented in this paper was partly funded by

the Swedish Knowledge Foundation, and the project “Pro-
fessional Licentiate of Engineering Research School“, con-
ducted at Blekinge Institute of Technology, Software Engi-
neering Research Lab - Sweden.

11. REFERENCES

[1] Tiwari, R. and Goel, N., 2013. Reuse: reducing test
e↵ort. ACM SIGSOFT Software Engineering Notes,
38(2), pp.1-11.

[2] Mohagheghi, P. and Conradi, R., 2008. An empirical
investigation of software reuse benefits in a large telecom
product. ACM Transactions on Software Engineering
and Methodology (TOSEM), 17(3), p.13.

[3] Bassett, P.G., 1998, June. How to solve the reuse
problem. In icsr (p. 373). IEEE.

[4] Mohagheghi, P. and Conradi, R., 2007. Quality,
productivity and economic benefits of software reuse: a
review of industrial studies. Empirical Software
Engineering, 12(5), pp.471-516.

[5] Sherif, K., Zmud, R.W. and Browne, G.J., 2006.
Managing peer-to-peer conflicts in disruptive
information technology innovations: The case of software
reuse. MIS quarterly, pp.339-356.

[6] Frakes, W.B. and Succi, G., 2001. An industrial study
of reuse, quality, and productivity. Journal of Systems
and Software, 57(2), pp.99-106.

[7] Nazareth, D.L. and Rothenberger, M.A., 2004.
Assessing the cost-e↵ectiveness of software reuse: a
model for planned reuse. Journal of Systems and
Software, 73(2), pp.245-255.

[8] Frakes, W. and Terry, C., 1996. Software reuse: metrics
and models. ACM Computing Surveys (CSUR), 28(2),
pp.415-435.

[9] Krueger, C.W., 1992. Software reuse. ACM Computing
Surveys (CSUR), 24(2), pp.131-183.

[10] Holmes, R., 2008. Pragmatic software reuse (Doctoral
dissertation, University of Calgary).

[11] Holmes, R. and Walker, R.J., 2007, May. Supporting
the investigation and planning of pragmatic reuse tasks.
In Proceedings of the 29th international conference on
Software Engineering (pp. 447-457). IEEE Computer
Society.

[12] Frakes, W.B. and Fox, C.J., 1995. Sixteen questions
about software reuse. Communications of the ACM,
38(6), pp.75-↵.

[13] Selby, R.W., 2005. Enabling reuse-based software
development of large-scale systems. Software
Engineering, IEEE Transactions on, 31(6), pp.495-510.

[14] Pohl, K., Böckle, G. and van Der Linden, F.J., 2005.
Software product line engineering: foundations,
principles and techniques. Springer Science & Business
Media.

[15] Lim, W.C., 1996, April. Reuse economics: A
comparison of seventeen models and directions for future
research. In Software Reuse, 1996., Proceedings Fourth
International Conference on (pp. 41-50). IEEE.

[16] J. Poulin, 1996, Measuring software reuse: Principles,
practices, and economic models. Boston, MA, USA
Addison-Wesley Longman Publishing Co., Inc.

[17] Konda, B.M. and Mandava, K.K., 2010. A systematic
mapping study on software reuse.

[18] Ashenbaum, B., 2006. Defining cost reduction and
cost avoidance. CAPS Research Critical Issues Report.

[19] Woods, J.E., 1988. Cost avoidance and productivity in
owning and operating buildings. Occupational medicine
(Philadelphia, Pa.), 4(4), pp.753-770.

[20] Mutnick, A.H., Sterba, K.J., Peroutka, J.A., Sloan,
N.E., Beltz, E.A. and Sorenson, M.K., 1997. Cost savings
and avoidance from clinical interventions. American
Journal of Health-System Pharmacy, 54(4), pp.392-396.

[21] Miyagawa, C.I. and Rivera, J.O., 1986. E↵ect of
pharmacist interventions on drug therapy costs in a
surgical intensive-care unit. American Journal of
Health-System Pharmacy, 43(12), pp.3008-3013.

[22] Laszlo, G.P., 1997. The role of quality cost in TQM.
The TQM Magazine, 9(6), pp.410-413.

[23] Gray, D. and Steenhuis, H.J., 2003. Quantifying the
benefits of participating in an industry university
research center: An examination of research cost
avoidance. Scientometrics, 58(2), pp.281-300.

[24] Jacobson, I., Griss, M. and Jonsson, P., 1997. Making
the reuse business work. Computer, 30(10), pp.36-42.

[25] Guerrieri, E., Lashway, L.A. and Ruegsegger, T.B.,
1989, July. An acquisition strategy for populating a
software reuse library. In National Conference on
Software Reusability (pp. 19-20).

[26] Lim, W.C., 1994. E↵ects of reuse on quality,
productivity, and economics. Software, IEEE, 11(5),
pp.23-30.

[27] Kitchenham, B. and Charters, S., Guidelines for
performing systematic literature reviews in software
engineering. 2007. URL http://www. dur. ac.
uk/ebse/resources/Systematic-reviews-5-8. pdf.

[28] Dyb̊a, T. and Dingsøyr, T., 2008. Empirical studies of
agile software development: A systematic review.
Information and software technology, 50(9), pp.833-859.

[29] “Cost Avoidance SLR - Supplementary Information“. ,
2016. Web. 13 Apr. 2016. https://sites.google.com/site/
mohsinirshad390/pub/CostAvoidanceSLR.pdf

[30] Goodman, L.A., 1961. Snowball sampling. The annals
of mathematical statistics, pp.148-170.

[31] Poulin, J.S., Caruso, J.M. and Hancock, D.R., 1993.
The business case for software reuse. IBM Systems
Journal, 32(4), pp.567-594.

[32] Poulin, J.S. and Caruso, J.M., 1993, March. A reuse
metrics and return on investment model. In Software
Reusability, 1993. Proceedings Advances in Software
Reuse., Selected Papers from the Second International
Workshop on (pp. 152-166). IEEE.

[33] Software reuse metric plan, Defense Information
Systems Agency, Falls Church, VA, August 1993,
dISA/JIEO/CIM.

[34] Amar, L. and Co↵ey, J., 2005. Measuring the benefits
of software reuse-examining three di↵erent approaches to
software reuse. Dr Dobbs Journal, 30(6), pp.73-76.

[35] O↵en, R.J. and Je↵ery, R., 1997. Establishing software
measurement programs. Software, IEEE, 14(2), pp.45-53.

[36] McCarey, F., ȯ Cinneide, M. and Kushmerick, N.,
2008. Knowledge reuse for software reuse. Web
Intelligence and Agent Systems: An International
Journal, 6(1), pp.59-81.

[37] Jacobs, D., 2005. Accelerating process improvement
using agile techniques. CRC Press.

[38] Demirors, O. and Gencel, C., 2009. Conceptual
association of functional size measurement methods.
IEEE software, 26(3), p.71.

[39] Morozo↵, E.P., 2010. Using a line of code metric to
understand software rework. Software, IEEE, 27(1),

pp.72-77.
[40] Gorschek, T., Wohlin, C., Carre, P. and Larsson, S.,

2006. A model for technology transfer in practice.
Software, IEEE, 23(6), pp.88-95.

[41] Petersen, K. and Wohlin, C., 2009, October. Context
in industrial software engineering research. In
Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement (pp.
401-404). IEEE Computer Society.

[42] Dyba, T., 2013. Contextualizing empirical evidence.
Software, IEEE, 30(1), pp.81-83.

[43] Kanso, A. and Monette, D., 2014, September.
Foundations for long-term collaborative research. In
Proceedings of the 2014 international workshop on
Long-term industrial collaboration on software
engineering (pp. 43-48). ACM.

[44] Gencel, C., Petersen, K., Mughal, A.A. and Iqbal,
M.I., 2013. A decision support framework for metrics
selection in goal-based measurement programs:
GQM-DSFMS. Journal of Systems and Software, 86(12),
pp.3091-3108.

[45] Poulin, J. S. (1993). Issues in the development and
application of reuse metrics in a corporate environment.
In Fifth International Conference on Software
Engineering and Knowledge Engineering..

[46] Jørgensen, M., 2004. A review of studies on expert
estimation of software development e↵ort. Journal of
Systems and Software, 70(1), pp.37-60.

[47] Hughes, R.T., 1996. Expert judgement as an
estimating method. Information and Software
Technology, 38(2), pp.67-75.

[48] Rush, C. and Roy, R., 2001. Expert judgement in cost
estimating: Modelling the reasoning process. Concurrent
Engineering, 9(4), pp.271-284.

[49] Mili, A., Chmiel, S.F., Gottumukkala, R. and Zhang,
L., 2001. Managing software reuse economics: an
integrated ROI-based model. Annals of Software
Engineering, 11(1), pp.175-218.

[50] Balda, D. and Gustafson, D.A., 1990. Cost estimation
models for reuse and prototype SW development
life-cycles. ACM SIGSOFT Software Engineering Notes,
15(3), pp.42-50.

[51] Tomer, A., Goldin, L., Kuflik, T., Kimchi, E. and
Schach, S.R., 2004. Evaluating software reuse
alternatives: a model and its application to an industrial
case study. Software Engineering, IEEE Transactions on,
30(9), pp.601-612.

[52] Böckle, G., Clements, P., McGregor, J.D., Muthig, D.
and Schmid, K., 2004. Calculating ROI for software
product lines. Software, IEEE, 21(3), pp.23-31.

