
New Quality Estimations in Random Testing

S. Mankefors, R. Torkar and A. Boklund
Dept. of Informatics and Mathematics
University of Trollhättan/Uddevalla

P.O. Box 957, SE-461 29 Trollhättan, Sweden
{stefan.mankefors, richard.torkar, andreas.boklund}@htu.se

Abstract

By re-formulating the issue of random testing into an
equivalent problem we are able to introduce a new kind
of quality estimations based on Monte Carlo integration
and the central limit theorem. This method also provides
a limited but working “success theory” in the case of no
detected failures. In an empirical evaluation using
hundreds of billions of simulated tests we furthermore
find a very good match between the quality estimations
presented in this article and the true failure frequencies.
Both simple modulus defects as well as seeded defects in
two extensively employed numerical routines were subject
to investigation in the empirical work.

1. Introduction

The testing and evaluation of software is of major
importance for all software and has been the subject of
research for some 30 years. Although exhaustive testing
in principle can prove software correct, in practice most
software has to be tested in some approximate way, trying
to uncover most of the faults. Even highly tested systems
like the NASA Space Shuttle Avionics software displays
a fault density of 0.0001 defects/line of code (at a cost of
1,000 USD/LOC), which is considered to be close to
what is achievable with modern methods [1].

In this respect one of the most difficult questions is
the issue of to what extent a test can be trusted, i.e. the
“quality” of a test. The current state of affairs is not
entirely satisfactory since most methods are not possible
to quantify in detail at the moment, while others do not
compare easily with each other (see [2,3] for a critical
review). Recent theoretical efforts have, however,
produced some good results [4,5] in this field. Taking a
more pragmatic point of view, a large number of
experimental evaluations have been performed of test
methods in order to try to compare the quality of different
test approaches, see e.g. [6-12]. There are also new
approaches to improve the choices of test data using data
dependence analysis [13] during execution as opposed to a
pure flow analysis.

Although inspiring, more exact results for many
methods are lacking. Put in a different way, paraphrasing
Dick Hamlet [14], a “success theory is missing”; there are
no good ways to determine how good a test that found
nothing was. In the area of coverage testing [11] and [14]
do provide theories towards this aim, but since absolute
coverage does not in itself constitute fault free software
they only provide partial answers.

Given the context, statistical test methods (“random
testing”) are unique in that they do provide a type of
answers about possible remaining faults or execution
errors [15]. The downside with this information is its
probabilistic nature and interchange-ability between failure
probability and test reliability. In addition to this,
random testing suffers from other well known
inadequacies, e.g. the inability to detect rare errors.
Despite this situation, statistical testing remains one of
the major testing approaches, if nothing else as a sort of
scientific base line. Random testing does also provide
massive quantitative data, something usually lacking
otherwise. Finally random testing may very well in many
circumstances outperform other test methods per time unit
– if not per test – due to the simpler test case construction
(random input). It is thus of significant importance to
extend the current work on random testing to include
solid quality estimations and eliminate the reliability-
probability evaluation problem as far as possible.

In this paper we present distinct quality estimations
and results for random testing, enabling much improved
use and interpretation of a random test suite. We
subsequently make this quality estimation subject of
empirical scrutinizing to ensure the strength of the results
using massive simulations encompassing hundreds of
billions of tests. The remaining parts of this paper are
consequently divided into a more general overview of
random testing, fundaments for quality estimations and
empirical evaluations of the suggested estimation using
massive test simulations.

2. Pro and cons of random testing

There is no absolute consensus on what statistical
testing (or fault detection) is. Partly is this due to the lar-

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

ge number of available methods, e.g. modern methods in
code inspection [16] are based on a classical statistical
approach. To be clear on this point we will from now on
strictly refer to test cases with randomized input and
comparison of the output to a well known correct answer
as random testing (this follows e.g. [15]).

Even so, the issue of the exact use of random testing
still remains open. Why use random testing at all?
Intuitively it is clear that by choosing input on a random
basis you always come up short compared to e.g.
equivalence partitioning [17] or someone inspecting the
code or specification closely and constructs the test based
on this information (unless a systematic error is made in
the non-random approach). It should also be clear that
random testing usually samples only a very small fraction
of all possible input. A straightforward if-statement that
compares two long integers and is executed if found equal
stands a chance of 1 in 4E9 to be exercised for a single
random test input.

a=random(1);
b=random(2);

if (a==b) then
{ some LOC…
}

Figure 1. The if-statement is highly unlikely to
be executed by straightforward random
testing.

On the other hand, similar arguments, although not as
strong, can be made about coverage testing. Borrowing
the following example from [2], see fig. 2, we note that
branch testing with the input value of (3,2) will not result
in a failure, while values (2,3) is going to result in an
erroneous result.

int multiplier(int n, int m)
{
 int result=0;
 while (n>0)
 {
 result=result+n;
 n=n-1;
 }
 return result;
}

Figure 2. Example of code that gives
misleading branch-coverage result.

The strongest argument in favor of random testing is
that mathematical tools provide a possibility to calculate
the successes as well as the shortcomings of the method.
Blunt or not, random testing possess a potential
industrial robustness. Given a way to fast and easily
check if the output result (or operation) is correct –

something that usually is referred to as the Oracle
Assumption [15] – random testing is both easy and
straightforward to implement. This combined with its
random nature (more about this later) allows for
extensive, mathematical analysis. Short of AI-like testing
approaches, mathematically inspired methods still remain
the most powerful tools available in testing. Possibly
advances in genetically programmed testing algorithms
[18, 19] will render this kind of basic tools superfluous,
but at the moment it would be hazardous to draw that
conclusion.

An important issue at this stage of reasoning is the
actual users (machine or human) input and the input used
in random testing, something that has been improved on
[20] and well examined [21]. Although it is well enough
to consider a test suite of 1,000 test cases with correct
behavior as an indication of that the routine, or similar,
usually behave well (i.e. has a low probability of
returning the wrong result on a general input), this has
not to be true for all input subspaces. Differently put,
faults in software are not any more random than, say cards
in a game of poker. There is a definitive answer to
whether player X has the ace of spades, and it will not
change from time to next if nothing happens in between
in the game (corresponding to no one re-writing the code).

This also means that a method may give completely
correct results for all long integer inputs except in the
range of 0-100. Given uniformly distributed non-biased
input from the user, the method will behave correctly
39,999,999 times out of 40 million. In this circumstance
– unless the method is executed extremely often – the
software at hand can be considered as next to flawless.
The mean time to failure (MTTF) will be closing in on
one year of continuous operation if the software has an
execution time around 1 second. On the other hand
random testing will most likely – unless used massively
– not uncover the fault at all. In the perspective of
uniform input this is correct: the failure frequency is
extremely low (1 in 40 millions).

Unfortunately this line of reasoning may be very
misleading in certain circumstances. If the user is human,
the application happens to be a computer based
calculating aid and the user is free to choose input, it is
intuitively clear that the probability for the user to choose
low numbers as input is extremely much higher in
everyday life than to choose high end numbers, e.g.
between 1,907,654,1000 and 1,907,654,1100 (which has
the same input range as 0-100). Hence such software,
subject to a well-performed random test suite with
asserted high MTTF based on uniform input will still be
perceived by the user as quite flawed due to the non-
uniform nature of the user profile.

It is therefore of outermost importance that the testing
conditions, and especially the use of a certain distribution
of random input, is clearly defined and declared for any
tested software. The necessity of clear definitions and
routines is a general truth in all testing activities, but

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

unusually important in random testing because of the
complex mathematical nature.

A direct consequence of the poor sampling of rare
events is that some extreme values in a method’s or
object’s input/attributes will never, or at least very rarely,
be tested using random methods. This is especially true
since pseudo random number generators (PRNG) usually
are used to produce input in random testing. Given the
fact that PRNG:s produce output in a certain legal range,
illegal values are not possible to obtain (unless the legal
range is larger than the input, e.g. long integers are used
to probe an input domain of short integers). The wisdom
to draw from this is that extreme and illegal values
should be tested in connection to, but separately from
pure random testing of legal input, see e.g. [6, 18] for a
practical example.

Despite these problems, random testing – given
properly handled input distributions – have certain great
advantages as pointed out earlier. Random test cases are
usually very fast to produce due to the automatic and
straightforward nature of the PRNG:s generating the
input. Given a routine and corresponding oracle that
perform reasonably well and execute in a few seconds,
random testing may cover tens of thousand cases in 24
hours. Automatic over-night testing can give tabulated
test results “en masse” for tested software units.

It has to be admitted though that the oracle
assumption makes random testing much more difficult
above unit-level. At the same time is random testing not,
and has never been, suitable for subsystem or system
testing: the possible combinations of input is so huge and
almost always subject to a specialized user input that the
random test suite ends up probing the wrong corner
almost regardless of its size, unless it is uniquely tailored
for the system.

Random testing hence offers advanced brute force
testing of units where straightforward oracles are
available. The results have to be carefully used, but as one
of very few methods, random testing offers the possibility
of genuine mathematical analysis.

3. Fundaments of quality estimations

Quality estimations of random testing has traditionally
been connected to classical statistical instruments, i.e.
confidence levels and believed performance.

Given enough time we would find the true failure
frequency θt for uniformly distributed random input:

θt = (number of test cases causing failures)/(the number
of all tests performed)

 (1)

Normally θt is only possible to determine exactly by
exhaustive testing, or approximately using massive
testing. It should also be noted that we, due to the
assumption of uniform distributions, do not care about in

which sub-domain of the input the failures take place – all
input is equally probable, and hence the related failures
too (with a different distribution the different inputs
would have to be weighted or measured differently).

In most software it is not possible to even come close
to a value of θt determined by exhaustive testing. Given a
single float number as input, there are 4E9 different
possible input values (see sec. 2). By testing the software,
using a limited number of randomly chosen inputs it is
possible to apply statistical analysis to the results for a
quantitatively controlled estimation of θt though.

When M failures are found by running N tests,
Nelson’s probabilistic theory [22] gives that a guessed
(estimated on the basis of the tests) failure frequency θg

has an upper confidence bound α according to:

1- N
j
θg
j (1-θg)

N-j ≥ α∑
j=0

M

(2)

The confidence bound determines the probability of
the test suit being a representative one, while θg is the
software engineer’s guess of the true failure frequency. To
be close to certain that the tests are “good” means that the
software engineers become restricted in the range of failure
intensity they can guess at: a “squeeze play” [14] takes
place between testing and failure probabilities.

Although straightforward, the above theory fails to
offer unambiguous quality estimation but leaves extensive
parts of the interpretation to the testing crew. Secondly
the nature of testing makes a statement like “Given the
failure frequency θg the probability for experiencing no
failures at runtime ten times in a row is (1-θg)

10” highly
dubious if there are input domains with very high (or
absolute) failure intensity. Strictly speaking the
combinatorial term would be domain dependent and from
a random input perspective, subject to a non-trivial
probability distribution in itself. More extensive reviews
of the constant failure frequency assumption and domain-
partitioning problem can be found elsewhere, see e.g. [14,
15]. As we will see, there exists an alternative formalism
that avoids this kind of reasoning though.

3.1. Failure Functions

Given the nature of software and the problem of the
under decided solutions above, we choose to introduce the
concept of “failure functions” as a mathematical tool.
Intuitively it is clear that a piece of software either fails or
succeeds for a specific set of input, regardless of the input
type (numeric, text, logic etc.) and software at hand. This
process is non-random, and very much repeatable. It also
matches existing mathematical problems: Integrals.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

To be able to be more exact in our reasoning we start
out by defining the input space X for a specific software
S.

Definition 1: A software S’ regular input set X is
defined to be all combinations of values legal with
respect to the input variable types of S.

The above definition is neither “white box” nor “black
box”, since the regular set (input domain) is defined by
the legal input types. This means firstly that exceptions
and overflows are not included in the regular domain, but
should be treated separately, see [6] for an example.
Secondly the domain could be concluded from the
specifications, given a detailed enough level of
description. But it could equally well be defined by
information collected in a white box process.

Definition 2: Each software S has a failure function FS

defined on the regular set X . FS (x) = 0 for a given
value x ∈ X if no failure occur, and FS (x) = 1 if a
failure is detected when the software is executed.

The function FS match the behavior of the software
exactly, although detailed knowledge of the function can
only be obtained with exhaustive testing. Assuming that
the regular input space is large enough to let us
approximate FS with a continuous function (this rules out
e.g. pure logical input domains though) and using
integration instead of summation, we find that:

θt =

FS dx
X

1 dx
X

 =

FS dx
X

|X|
 = < FS >

(3)

The bracketed term implies the mean value of FS.
Finding the true failure frequency (the mean value if exact
in eq. 3) hence becomes identical to integrating (or sum
up, if we let go of the continuous approximation) the
failure function and dividing by the size of set X .
Although trivial as far as relations go, this enables a new
variety of tools. It also allows us later on to go beyond
the somewhat limited use of just finding θt. It should be
noted though that this equivalence is only meaningful for
input with a reasonably large legal span of values
(integers, strings, floats etc.) Otherwise the small size of
|X| will render the notion of average and continuity quite
meaningless.

Turning to the integration (summation) of FS we
notice that we somehow have to integrate (sum) an
unknown function: a problem identical to the evaluation
of random testing (since it is just another formulation of
it), see fig. 3.

Figure 3. The general problem of integration
of a failure function FS and the relation to
testing.

Unfortunately the “un-smooth” nature of the failure
function limits the number of available tools for
integration. One of the most straightforward methods,
Monte Carlo integration [23], applies well, however. The
idea is to sample the function (FS in our case) by random
input, calculate the mean and multiply it by the volume
the integral is defined on. More strictly we have:

FS dx
X

 = |X| < FS > + Err. terms =

= |X| 1
N

 FS(xi)∑
i=1

N

 + Err. terms
(4)

The <FS> term is the mean value of the failure
function in the N randomly chosen xi points in the regular
input set |X|. The expression is of course of limited use
before the mathematical error terms are estimated. It
simply indicates that if one by random choose a large
number of points in the legal range of the failure function
and take the average, one should come in the vicinity of
the absolute average (compare eq. 3). Drawing on our
established correspondence to random testing, eq. 4 just
states the fact that an approximation of θt is the number
of failures found, divided by the number of tests
performed.

3.2. Quality estimations: elementa

The definitions and equations in section 3.1 merely
cast the problem of random testing in a different form,
although it circumvents some of the more traditional
formulations and associated problems. All the more
interesting is the estimation of the mathematical error
terms in eq. 4. As long as each input xi is chosen
statistically independent of each other, the exact nature of
how representative the associated FS(xi) values are (i.e. the
probability distribution of errors) is irrelevant if the
number (N) of input values xi is large enough relative the
input space (typically a number of hundred up to a few
thousand of tests).

In this case the central limit theorem guarantees that
the resulting probability distribution of errors
(mathematical mismatch) will be close to a Gaussian

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

distribution (see e.g. [24] for a proof and explanation of
the central limit theorem). Differently stated will random
testing with its randomized input ensure that the
mathematical error terms in eq. 4 approximately follow a
Gaussian distribution.

This approximation is valid for all cases when the
number of tests is large relative to the input space, i.e. at
least decently samples each input variable space. This is
an extremely important point to be made since it
eliminates any assumption about “evenly distributed
execution failures” or similar which has troubled some of
the earlier results in the literature, see e.g. [14, 15] for a
discussion.

Although this could have been argued for without
using the formalism of integrals, we will retain the form
due to reasons revealed later in the text. In accordance
with standardized statistical estimations, we identify the
mathematical uncertainty (error) in eq. 4 with the number
(k) of allowed standard deviations (σ):

FS dx
X

≈ |X| < FS > (1 ± kσ
N < FS >

)
(5)

Taking all values within one standard deviation σ (i.e.
k=1) from the mean value < FS > covers 68% of the
statistical possibilities, while using two standard
deviations (k=2) covers 95%, k=3 covers 99.7% and k=4
approximately 99.99% (see [25] or similar for tables).
Although we a priori do not know the variance (=σ2) of
the failure function FS, the sampling of FS provides a
good approximation:

σ2 ≈ N 1
N

 FS
2 (xi)∑

i=1

N

 - 1
N

 FS(xi)∑
i=1

N 2

(6)

In standard short hand notation this becomes:

σ2 ≈ N (< FS
2 > - (< FS >)2) (7)

The average is taken over the N sampled input points.
It should be noted that given a very large N approaching
the size of the regular input set, this relation becomes
exact. Now, using eq. 7, eq. 5 transforms into:

FS dx
X

≈ |X| < FS > ± k
< FS

2 > - < FS > 2

N
(8)

Since the failure function FS in our case only takes on
the simple values of 1 and 0, < FS

2 > becomes degenerate
with the value of < FS >. Hence for uniform input
distribution we have the following result:

Result 1: If a software S with regular input set X and
an associated failure function FS exists and the number
of test inputs is large enough, the total number of
failures for S on X are given within k standard
deviations by:

FS dx
X

≈ |X| < FS > ± k
< FS > - < FS >

2

N
(9)

Knowing the average failure rate in N tests then
immediately returns the quality estimation. As a practical
example, using the limit of k=4 standard deviations
(returning a coverage certainty of 99.99%) 2,300 tests and
45 found failures at runtime, we get an estimated failure
rate of 1.95%± 1.15% (i.e. a maximum of 3.1%). The
absolute number of faults increases linearly, however, as
does the quality uncertainty with the size of the regular
input set.

At this stage it is important to stop to scrutinize the
validity of the approximations made so far. The central
limit theorem returned the result above under the
assumption of a “large enough number of input values”.
Hence the results so far are mathematically valid in all
cases where the statistics is good, i.e. many test cases are
performed and a reasonable amount of failures are found.
The “demand” for failures arise from the fact that the
number of input values is not only important as an
absolute number by itself but also relative the number of
observed failures in eq. 9 (see the discussion below). In
the case of poorer numbers, the approximation becomes
less precise.

3.3. Lower end quality estimations

The approximate approach to the full-scale
probabilistic problem presented here offers a great
reduction of complexity in the evaluation of random
testing, enabling solid hands-on quality estimations and
calculations easy enough to do on a sheet of paper. It also
offers straightforward tabulating of the quality of software
units, as well as robustness in performance as the
empirical evaluation below shows. The draw back is that
the result above does not cover the lower end of the
failure frequency in a strict mathematical-statistical sense

In order to extend the quality estimations to
encompass the full range of frequencies we identify the
limitations of the approximation and adjust it accordingly
below. The necessity of this becomes self-evident
considering the lower boundary of the quality estimation
in eq. 9: given few enough failures the lower quality
boundary will become less than zero.

This is a pure complication due to too few input
values since σ is divided by the square root of N relative
the average of FS. That is, in the case of few found
failures, going from 200 recorded tests to 400 tests will

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

in general do little to the found average, but reduce the
boundary term by a factor of √2. The normal software
engineer could not be expected to extend the number of
test cases in order to meet the demands of an academic
result though.

Instead we conclude that if the lower boundary given
in eq. 9 falls below zero, a reasonable quality estimation
to make within the current approach is to assume that the
entire quality boundary is given by [0, 2kσ]. This ensures
that the total span of the quality estimation remains
intact, while the failure frequency might be overestimated,
but hardly the other way around. More precisely stated we
get:

Result 2: If a software S with regular input set X and
an associated failure function FS exists which has been
probed by N test inputs, the total number of failures for
S on X are given within (at least) k standard deviations
by:

FS dx
X

≈ |X| < FS > ± C ; σ =
< FS > - < FS >

2

N

< FS > - C = max(0, < FS > -kσ)
< FS > + C = max(< FS > + kσ, 2kσ)

(10)

For normal failure frequencies eq. 10 becomes
identical to eq. 9, but in the case of very small
frequencies it shifts the quality boundary upwards to
avoid a “spill-over” to negative (and hence impossible)
values. More strictly put eq. 10 express the statistical
limits of eq. 9 in conjunction with the provided tests in
each individual test suite.

This limitation is also directly connected to the
quality demands raised by the software engineer.
Obviously the “spill over limitation” will be enforced for
smaller frequencies if the software engineer chooses a “2
standard deviation quality” boundary, as compared to 4
standard deviations (compare the maximum functions in
eq. 10). The reason for this seemingly strange behavior is
an intrinsic part of the statistical approximation used here.
If we want the statistical results to be true for 3 or 4
standard deviations, the demands on the statistical
quality, and hence the test suite itself, simply grow
essentially larger compared to if we are satisfied with 1 or
2 standard deviations.

Although the results in eq. 10 seemingly just provides
a crude cut-off in the lower end of the available failure
frequency range, it in reality compresses the very same
“cut-off” together with the falling failure frequency,
something that is observed empirically to fit data very
well (see below). This is so since σ is still estimated
trough the observed failures in eq. 6 and hence grows
smaller together with the failure frequency.

It would now appear that the quality estimation in eq.
10 – despite corrected lower limit behavior - suffers from
the same limitation as other theories. For zero detected

failures, eq. 10 returns an estimation of exactly zero due to
the “variance compression” discussed above. The inability
to prove a test suite successful is a trivial illusion,
however, since a reasonably bad scenario is that the very
next (un-executed) test in the suite would have caused a
failure. Assuming that the true variance (i.e. what would
be given by exhaustive testing) corresponds to this
scenario we get a possible failure rate of:

FS dx
X

≈ |X| 2k 1
N(N+1)

- 1
N(N+1)2

≤ 2k
N
(11)

It should be pointed out at this stage that even if one
assumes something along the lines of “the next two tests
would have failed if we did not stop”, the quality bound
still only increase by √2 due to the square root
expression. Alternatively, the statistical certainty falls
from 4 to slightly less than 3 standard deviations. In
addition to this, one should keep in mind that statistics
can only properly be used on large suites (which is not
always practiced [6]), which in turn ensures highly
modest deviations along the lines suggested above.
Despite these objections, the simplistic approach used
here is sufficient for many purposes and withstand the
empirical evaluation quite well as we will see below.

A rightful question to ask now, is to what extent the
results in eq. 9-11 contributes to random testing, apart
from an apparent re-formulation of the theory for
uniformly distributed inputs?

First of all it is a different approach based on a
statistical evaluation instead of Nelson’s combinatorial
approach and thus not a re-formulation. It also offers a
great reduction of complexity as noted above – the
software engineer can in eq. 10 and 11 choose the desired
quality boundaries as in an ordinary engineering problem
and get a solid estimation. Something practically put to
the test in the empirical section of this paper with very
good results. Furthermore does eq. 10 represent a
definitive simplification – the example of 2,300 tests and
45 failures is far from easily assessed in eq. 2. In addition
it offers both a simple “success theory” as well as the
access to a vast set of existing advanced numerical
methods for Monte Carlo evaluation of integrals [23]. The
straightforward method presented here is the simplest
possible, but makes a solid ground for further work, one
being the possibility to introduce multiple user profiling
based on an already conducted random test suite.

4. Empirical evaluation

No matter how powerful a theoretical result may be, it
has to be empirically validated if it is going to be of
practical use to engineers. This is true in all engineering
disciplines, including software engineering. We therefore
turn our attention to simulated testing, that is, the
mimicking of real test situations where controlled

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

software errors are seeded. By looking at the “mutation
coverage” (i.e. how many of the artificial errors that are
found) it becomes possible to analyze the effectiveness of
a test method, or as in this case, validate the theoretical
quality estimations.

In order to use this approach for verification of the
results in section 3 we have to undertake massive test
simulations. Only extensive testing will give the “true”
failure rates and variances. Differently put: performing
100,000 test suites, will the results of eq. 10 – especially
the “upper quality bound” - hold to be true?

It should be pointed out that it is only by performing
this kind of analysis, one really can say anything with
relative certainty, about a statistically based theory. Once
shown to be reliable on the other hand (which demands
repeated validation beyond this article of course), the
theories could readily be used in everyday software
engineering in the same way as numerical integration and
statistically based methods are used in other engineering
disciplines daily.

4.1. Methodological framework

Using mutation analysis to estimate the absolute
number of failures, failure rates etc., one should seed
errors in software that is known to be defect-free and well
known in the software community in order to establish a
common base-line. This presents a problem since not
even extremely reliable software can be said to be
absolutely fault-free [1] and far from all software is “well
known”. One way to solve this problem is to employ
common, well-trusted software for mutation analysis. A
couple of the more popular benchmarking software units
are TRIANGLE [6,26,27] and FIND [6,28] which are
programs to determine the type of a mathematical triangle
and a highly straightforward sorting algorithm
respectively.

A problem with “small and well controlled” pieces of
software is that they have small bearing on real life
software, however. Furthermore does a general criticism
exist against random testing for performing well on small
“toy programs”, but considerably worse on software used
in real life, see e.g. [6]. The benefit of very small pieces
of software on the other hand is the high degree of control
in the experiment they allow. It becomes increasingly
difficult to tune the failure frequency and behavior of the
seeded mutations with the growing complexity of the
code.

Trying to resolve this problem and meet the criticism
in the field we have employed both a straightforward
modulus error in order to allow “mass testing” as well as
extensive material of more realistic cases. A number of
well-known numerical routines from [23], some being
more than 30 years old in their initial form, are used to
host more realistic mutations/faults. The numerical
routines at hand have also been continuously and
extensively used in real life research and industry for a
similar period of time. More extensively corrected, tested

and used software is hard to find, possibly short of
embedded industrial systems.

Because the routines can be assumed to be defect free,
they also provide testing Oracles in themselves. That is,
we assume that the routines behave properly before
mutation and replace the absolute failure frequency with
the relative one where comparing the outcome from the
original and the seeded code establish failure. Finally the
code is available on CD, which eliminates the human
factor in transferring the software to the platform to be
used in the simulations (which sometimes renders a defect
free software highly dysfunctional).

Turning to the simulations, we have chosen to seed
artificial defects with variable failure rates, in each
individual software. The combined failure rate is
subsequently calculated theoretically or determined by
massive testing (tens of millions of tests or more). In the
second phase we perform a vast number of test suites for
each software and fixed (true) failure rate. The statistically
determined variance from the combined number of tests is
calculated as well as the theoretical predictions for each
individual test suite. A comparison is then made between
the different theoretical predictions based on the minor
test suites and the actual failure rates. Varying the failure
rate, the full experiment is repeated for each rate and
software.

4.2. Technical details

The random input was generated using the PRNG
“Ran2” from [23]. All software subject to testing was
written in Fortran and thus non-object oriented. The
routines in [23] are readily available in C as well [29], but
the Fortran version was chosen out of convenience. In
addition to the numerical routines chosen, we
implemented a simulated “modulus error” for massive
testing, see fig. 4.

i=abs(Mod(testinteger, ErrorFrequency))
i=i+ErrorFrequency/2.0
k1=0

if (i.gt.ErrorFrequency) then
 k1=1
endif

k2=0

if (i.ge.ErrorFrequency) then
 k2=1
endif

Figure 4. The “modulus” software (upper) and
its oracle (lower). Note the difference in the if-
statements which will result in a failure
(different result compared to the oracle) when
i=ErrorFrequency/2.

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

This kind of fault, e.g. by mistake using “>” instead
of “≥”, typically appears in type conversions, boundary
controls, checksum routines or similar. Admittedly it is a
type of fault that different kinds of coverage testing
techniques normally would find. Still it is a type of
defect that is readily found in modern software
development [30]. It also holds the basic properties of
most software errors, being exact (non-random), repeatable
and a typical subject of human mistake. Furthermore it is
a test with one of the shortest possible execution times,
which allows massive testing.

To properly exploit the fast execution of the “mutation
error” we performed test suites with the individual “batch
size” of 10, 100 and 1,000 tests in each series. The cut-off
at 1,000 tests was made out of practical considerations
(see the total number of tests run below) but could in
principle easily be raised to cover extremely long test
series (millions of tests in each suite). Although the lower
end with 10 tests hardly state a test series we included
these short series for completion. For each batch size, we
varied the error frequency (see fig. 4) through the values
1/10 down to 1/1500 in a 15 steps procedure. In each
case, for each error frequency and batch size, 10 million
suites were implemented, resulting in a total of 166.5
billion test executions. Hence we utilized the “modulus”
error to severely challenge the theoretical results in terms
of statistical validity.

Turning to the non-trivial software examples, we have
chosen to investigate two real-life routines used in
engineering disciplines over the years. This choice has
been made in order to test the theoretical approach against
not only a laboratory environment, but also realistic
problems.

We employed the CISI and SVDCMP routines from
[23], seeding well controlled mutations. The former
routine calculates the cosine and sine integral for a given
input value (float) and consists of 70 lines of code. The
second routine is of a more complicated nature, larger
(240 lines) and performs a singular decomposition of any
given (mathematical) matrix. The input size of the matrix
was chosen to 4 x 4, with all entries consisting of random
float numbers.

In both cases we used two types of seeded defects,
typical of human errors: parameters offsets and mutated if-
statements (conditions shifted). In the latter case the code
will end up executing the wrong part of the code,
depending on the exact nature of the input. Changing a
parameter value will only affect the outcome if it
interferes destructively with the execution, e.g. if it is
used as a multiplier or is large enough relative a key
variable it is added to, in order to tip the balance in an if-
statement.

Furthermore these two defect types represents two
types normally found by different testing methods. While
the “branch-defect” should be detected by a branch-
coverage test, a parameter shift could prove intrinsically
difficult to find using code coverage. Hence the two fault
types not only represents common human mistakes, but

also pose a challenge for the current random approach due
to the different nature of the two.

To further test the theory at hand we mixed both types
of defects, resulting in a more realistic scenario with
different levels and numbers of problems, see table 1.

As in the case of the “modulus error” (see fig. 4) we
performed test series of 10, 100 and 1,000 tests in each.
For every type of defect and suite size we performed 10
million test series, resulting in 111 billion tests of the
two routines. At each stage the randomized input was fed
to the un-permutated routine to create the “Oracle answer”,
which subsequently was compared with the answer from
the permutated routines.

Table 1. Schematic listing of the type of
defects seeded in the two numerical routines
used for empirical evaluation.

Type of error
1. Parameter error, rare execution
2. Parameter error, executes more often
3. Branch-defect, executes modestly often
4. Combination of 1 and 3
5. Combination of 2 and 3

In order to avoid recording “round-of errors” we
controlled each manipulated software routine with the
seeded defects “switched off” by running 100 million
tests where the answers were compared in the same way as
above. No failures were recorded, which strongly suggests
the absence of round-of errors or similar. To establish
absolute certainty with exhaustive testing was not a viable
alternative due to the humongous size of the input space.

5. Empirical results and discussion

Statistical results, especially when it comes to quality
estimations or similar, tend to be less “hands on” than
“absolute numbers”. Neither are the implications always
very intuitive or self-explanatory. The results of section 3
above are an attempt to solve some of the former
ambiguity and the interpretation of our findings is very
straightforward: the probability that the true failure
frequency is within the predicted rate (<FS>±kσ) is given
by a tabulated number. This on the other hand implies
that if the software engineer uses e.g. two standard
deviations in his/her quality estimation in eq. 10, the
probability of the test suite at hand actually returning an
estimation that does not match (within bars) the true
failure frequency should be no more than 5%. If one is
not satisfied with this (rather high) probability, one
should use three or four standard deviations which would
give 0.3% and less than 0.01% respectively (see section
3).

If the quality estimations in section 3 are to hold true,
the portion of test suites that under- or overestimates the
failure frequency may thus not exceed the given numerical
limits. More strictly should the resulting distribution of

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

quality estimations comply with the assumed Gaussian
approximation when it comes to variance and standard
deviations in order to be useful.

Alternatively and more practically formulated, the
extremely unlikely “1 in 10,000” (the case of k=4) test
suite which provides an unusually bad sampling of the
code at hand should - despite it being a “pathological”
(bad) test suite - still result in a quality estimation that
actually encloses the true failure frequency. That is, the
upper quality boundary should coincide with the true
failure frequency for the “1 in 10,000” (k=4) test suites.
Only test suites being extremely rare are allowed to fail
and actually underestimate the true failure frequency (see
above).

5.1. Modulus evaluation

We now turn to the “modulus error” case described
above where we compiled all performed test suites for the
different batch sizes and failure frequencies (see section 4).
For each fixed failure frequency we calculated the total
average and variance employing all test cases in all
available test suites. In all cases both the average and
variance agreed with theory, confirming the theoretically
tuned failure frequency.

Continuing with the quality estimations we have
plotted the upper quality bound of the pathological test
suites (1 in 10,000 k=4, 1 in 333, k=3 etc., see above)
versus the true failure frequency for all investigated suites
encompassing 1,000 tests in fig. 5.

An overall very good match is found, with the upper
quality bound being very close to the true failure
frequency. This directly implies that the quality
estimation in eq. 10 (section 3) does hold the level of
certainty introduced there, even when pushed to the limit
in massive simulations.

As the number of observed failures goes down to zero,
the estimation in eq. 11 (section 3) ensures a constant
upper quality bound which properly encompass the true
failure frequency. This is illustrated by the “leveling out”
of the failure frequency estimations, turning into constant
minimum value (2k, see eq. 10) “plateaus” in fig. 5. The
upper “success” bound in this case is quite crude,
however, even if fully functional as pointed out earlier.

The low frequency results is especially noteworthy
since the data points before the minimum value plateaus
sets in, corresponds to a single recorded failure in a test
suite of 1,000 tests. What more is, this happens in highly
un-representative test suites (where the “proper” number of
failures should have been much higher), which represents
the case of 1 in 10,000 (1 in 333 etc.) of all performed
test suites. Still the upper bound of the quality estimation
virtually coincides with the true failure frequency,
something that clearly indicates the strength of the
approach and the lower end adjustments in sec. 3.3.

Figure 5. The upper boundary of estimated
failure frequency in the case of “miss-
fortunate” test suites (1,000 tests each)
corresponding to 1, 2, 3 and 4 standard
deviations (in e.g. the case of 4 deviations,
the figure indicates the upper boundary value
in the quality estimation made for the “1 in
10,000” poorest test suite). The triangles
mark the total average found for each
investigated true failure frequency (see the
text).

In the case of the test suites with fewer tests (100 and
10 in each suite respectively), the agreement in the 100
case was just as good as in the case of more extensive
(1,000) test suites. The minimal upper bound (the
plateaus) sets in earlier though, due to the lower number
of tests in each suite.

Also the “suites” of 10 test cases did conform to the
theory presented in sections 3.2 and 3.3, but on the other
hand does even a single failure imply an estimated upper
quality bound of 0.8 failures per run (using k=4), which
render most comparison useless. This effectively shows
the absolute need for proper statistics using random
testing.

5.2. CISI and SVDCMP evaluation

Turning to the evaluation of the tests of the mutated
numerical routines we notice the same level of agreement.
It should be noted though that in this case we do not have
access to any theoretically calculated failure frequency but
simply define the recorded average failure frequency as the
“true” failure frequency. Now, performing the same kind
of comparison between the upper quality boundary for the
“pathological” (see above) test suites and the actual failure
frequency, we find very good agreement between the
theoretical results and the empirical evaluation (see fig. 6).
The “plateau” phenomenon in the case of four standard

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

deviations (left in both panels) is recognized from the
modulus case, but the over all agreement is of the same
quality.

Figure 6. Match between the upper quality
bound and actual failure frequency for “worst
case” test suites. Triangles mark the failure
frequencies for the different defects (see
table 1). Panel a) is based on mutation of the
CISI routine while panel b) is evaluated using
SVDCMP. The scale is the same as in fig. 5.

The failure frequency is confined to a smaller interval
as compared to the “modulus error”, but contains on the
other hand only five defects in each case due to the
considerably longer execution time. Still, there is no
difference in agreement between the simple modulus
failure and the mutated numerical routines. Nor did we
find any differences between agreement for the branch,
parameter or mixed defects for the two routines.

Perhaps even more interesting is that the accuracy of
the presented method actually is rather independent of the
complexity of the input as long as the statistics is good
enough for the integral evaluation process underlying our
results in sec. 3.2 and 3.3. Otherwise this is a much-
debated issue. D. Hamlet has in several papers, see e.g.
[14], compared the effectiveness of random testing with
investigating the fauna of the great lakes by putting in
one day’s effort of commercial fishing. From this follows
the apparent logical conclusion; “the greater the lake, the
poorer a method”.

In our current formulation, however, it becomes
evident that the input to the failure function FS is of less
interest since we are sampling the failure profile (the
integral in eq. 3 and 4, see also fig. 3). A complex input
does complicate the use of a more realistic user profile
than the uniform distribution used here though, but only
in the input generation process itself.

Finally we note that the test suites with fewer tests
conform well to the theoretical results in eq. 10 (section
3), but generally the minimum value plateaus sets in so
early that most failure frequencies are covered by them in
the same way as with the “modulus error”.

6. Conclusions

In this article we have presented a short exposé of
arguments against and in favor of random testing.
Although outperformed per test, random testing may still
perform better per time unit than coverage testing and
offers a set of mathematical tools that is otherwise lacking
in much testing, especially considering early phases of
testing. The drawbacks have so far been evident despite
this: ambiguous evaluations and no unique benefit over
other approaches.

We have shown, however, that it is possible to
transform the issue of random testing into an equivalent
problem, formulated using integrals. Applying Monte
Carlo evaluations techniques in conjunction with the
central limit theorem it becomes possible to evaluate the
software reliability using a given test suite in a very
precise manner. Upper bounds on the true failure
frequency (as given by exhaustive testing) are easily
established within this framework. Furthermore our result
allows us to establish an upper bound on the quality of a
test suite returning zero failures, i.e. it provides a limited
but working “success theory”.

Massive empirical evaluations with simulated testing
scenarios encompassing hundreds of billions of tests have
been used to verify the current theory successfully not
only for small artificial failures but also seeded failures in
two extensively used routines. Taken together this present
a relative advancement of the state of random testing and
ads a special feature in the case of the success theory. This
clearly indicates that there is still room for random testing
in today’s testing practice.

7. Future work

The findings presented here opens up a variety of
possibilities, most notable in the area of user profiles.
While previously existing theories in random testing are
not easily adapted to encompass a flexible user profile
(i.e. one have to specify the user profile before running
the test suite), the integral formulation presented here
offers new possibilities to solve this long standing
problem in random testing. Furthermore, the results in
section 3, leaves much to be improved on, being
relatively coarse in their estimations. Finally is the
connection to, and combination with, coverage testing of
especial interest.

8. Acknowledgements

The European regional fund and the KK-foundation for
financing parts of this project

9. References
[1] L. Hatton, “N-version design versus one good design”,
IEEE Software, pp. 71-76 (Nov./Dec. 1997).

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

[2] J. Miller, M. Roper, M. Wood and A. Brooks, “Towards a
benchmarking for the evaluation of software testing
techniques”, Information and Software Technology, 37, pp.
5-13 (1997).

[3] M. Rooper, “Software testing - searching for the missing
link”, Information and Software Technology 41, pp. 991-994
(1999).

[4] P. G. Frankl, E. J. Weyuker, “Testing software to detect and
reduce risk”, J. of. Systems and Software 53, pp. 275-286
(2000).

[5] T. W. Williams, M. R. Mercer, J. P. Mucha, R. Kapur, “Code
coverage, what does it mean in terms of quality?”, IEEE Proc.
Reliability and Maintainability 2001.

[6] H. Yin, Z. Lebne-Dengel and Y. K. Malaiya, “Automatic
test generation using checkpoint encoding and antirandom
testing”, Technical report CS-97-116, Colorado State
University

[7] Y. K. Malaiya, “Anti-random testing: getting the most out
of black-box testing”, Proc. International Symposium On
Software Reliability Engineering, pp. 86-95 (Oct. 1995).

[8] S. Kuball, G. Hughes, “Scenario-based unit-testing for
reliability”, IEEE Proc. Reliability and Maintainability 2002.

[9] N. Kobayashi, T. Tsuchiya, T. Kikuno, “Non-specification-
based approaches to logic testing for software”, Information
and Software Technology 44, pp. 113-121 (2002).

[10] D. C. Ince, S. Hekmatpour, “Empircal evaluation of
random testing”, Comput. J. 29, p. 380 (1986).

[11] J. W. Duran, S. C. Ntfasos, “An evaluation of random
testing”, IEEE Trans. Software Engineering 10, pp. 438-444
(1984).

[12] Y. K. Malaiya, J. Denton, “Estimating Defect Density
Using Test Coverage”, Technical report CS-98-104, Colorado
State University.

[13] B. Korel, “Automated test data generation for programs
with procedures”, Proc. 1996 International Symposium on
Software Testing and Analysis, pp. 209-215, ACM Press.

[14] D. Hamlet, “Foundations of software testing:
dependability theory”, Proceedings of the 2nd ACM SIGSOFT
symposium on Foundations of software engineering, New
Orleans, Louisiana, United States (1994).

[15] D. Hamlet, “Random testing”, Encyclopedia of Software
Engineering, editor J. J. Marciniak, John Wiley & Sons
(2001).

[16] C. Wohlin and P. Runeson, “Defect content estimations
from review data”, 20th international conference on software
engineering, (Kyoto, Japan), pp. 400-409, IEEE Computer
Society (1998).

[17] G. J. Myers, The Art of Software Testing, John Wiley &
Sons (1979)

[18] G. McGraw, C. Michael, M. Schartz, “Generating software
test data by evolution”, RST Corporation, technical report
RSTR-018-97-01 (1998).

[19] C. Michael, G. McGraw, M. Schatz, C. Walton, “Genetic
algorithms for dynamic test data generation”, RST
Corporation, technical report RSTR-003-97-11 (1997).

[20] J. D. Musa, A. Iannino, K. Okumoto, “Software
reliability, measurement, prediction, application”, McGraw-
Hill, New York (1987).

[21] N. Li, K. Malaiya, ”On input profile selection for
software testing”, Technical report CS-94-109, Colorado
State University.

[22] R. Thayer, M. Lipow and E. Nelson, Software Reliability,
North-Holland (1978).

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery, “Numerical Recipies in Fortran”, Cambridge Press,
Cambridge (1999).

[24] A. I. Khincin, “Mathematical foundations of statistical
mechanics”, p. 166, Dover publications, New York (1949).

[25] L. Råde, B. Westergren, “Beta - Mathematics handbook”,
Studentlitteratur, Lund (1993).

[26] R. A. Demillo, R. J. Lipton, F. G. Sayward, “Hints on data
selection: Help for the practicing programmer”, IEEE
Computer, pp. 34-41 (1978)

[27] P. C. Jorgensen, “Software testing: A craftsman’s
approach”, CRC Press, New York (1995).

[28] W. E. Wong, “On mutation and dataflow”, Ph.D. thesis,
Purdue University, Computer Science department (1993).

[29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery, “Numerical Recipies in C”, Cambridge Press,
Cambridge (1999).

[30] R. Torkar, S. Mankefors, K. Hansson, A. Jonsson, “An
exploratory study of component reliability using unit
testing”, ISSRE 2003 (accepted).

Proceedings of the 14th International Symposium on Software Reliability Engineering (ISSRE’03)
1071-9458/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: BLEKINGE TEKNISKA HOGSKOLA. Downloaded on January 15, 2010 at 10:02 from IEEE Xplore. Restrictions apply.

