Objective Re-Weighting to Guide an Interactive
Search Based Software Testing System

Bogdan Marculescu®, Robert Feldt*T, Richard Torkar**
*Blekinge Institute of Technology
School of Computing
Karlskrona, Sweden
fChalmers and University of Gothenburg
Dept. of Computer Science and Engineering
Gothenburg, Sweden

Abstract—Even hardware-focused industries today de-
velop products where software is both a large and im-
portant component. Engineers tasked with developing and
integrating these products do not always have a soft-
ware engineering background. To ensure quality, tools
are needed that automate and support software testing
while allowing these domain specialists to leverage their
knowledge and experience.

Search-based testing could be a key aspect in creating an
automated tool for supporting testing activities. However,
domain specific quality criteria and trade-offs make it
difficult to develop a general fitness function a priori, so
interaction between domain specialists and such a tool
would be critical to its success.

In this paper we present a system for interactive search-
based software testing and investigate a way for domain
specialists to guide the search by dynamically re-weighting
quality goals.

Our empirical investigation shows that objective re-
weighting can help a human domain specialist interactively
guide the search, without requiring specialized knowledge
of the system and without sacrificing population diversity.

Keywords-search based software testing, interactive
search based software engineering, user centered, embed-
ded software, industrial experience

I. INTRODUCTION

Software is often developed as one part of a more
complex system, by companies whose core competen-
cies lie in other fields. Such companies often lack the
software development and testing expertise needed to
perform extensive software quality assurance, choosing
instead to focus their efforts on maintaining and de-
veloping vital domain-specific knowledge. This reflects
the reality that the quality of software-intensive products
depends on a series of trade-offs, and software quality is
just one concern among many. Increasing a company’s
focus to include software engineering and testing would
incur significant costs, without guaranteeing a significant
increase in the overall level of quality of the product

in its entirety. An alternative to this approach is to
use a pre-packaged software testing toolbox to enable
domain specialists to focus on applying their experience
and knowledge of the domain, rather than developing
software testing skills. In this context we use “domain
specialists” to denote systems engineers and other spe-
cialists in their own fields that have to develop, use
and test software. The importance of knowing domain-
specific constraints and trade-offs outweighs that of
achieving proficiency in software testing.

It is in this context that interactivity becomes im-
portant. A pre-packaged software testing toolkit is dif-
ficult to develop and optimize before the specifics of
the application become known. Moreover, the precise
focal points of the testing process may change from
one project to another or may vary in time within the
same project, further emphasizing the importance of
integrating domain knowledge into any effective testing
tool.

This paper focuses on the problems met by domain
specialists in testing software and proposes a solution to
address, or at least alleviate, these problems.

In section II, we consider existing approaches to
interactive evolutionary search, and discuss how our
approach differs from them. Section III describes the
industrial context and a system we use as a running
example. Then, section IV describes in more detail the
objectives of this study and the way the system was
designed to meet those objectives. A closer look at the
implementation of that design can be found in section V.

A brief empirical evaluation is described in section VI,
with some of the threats to the validity of the study
discussed as well. Section VII concludes.

II. RELATED WORK

Search Based Software Engineering (SBSE) is a term
coined by Harman and Jones in 2001 [1] to describe the

application of metaheuristic search techniques to soft-
ware engineering problems, e.g. [2], [3], [4]. The branch
of SBSE concerned with testing problems is known as
Search Based Software Testing (SBST) and has been
applied to several types of testing problems [5], [6], from
object-oriented containers [7] to dynamic programming
languages [8]. However, there has been very few studies
considering interactive SBSE.

Feldt [9] described an interactive development envi-
ronment where tests are created as the engineer write
the program code or refine the specification. The system
used the interactions of the engineer to help guide the
search but the effect on the fitness function was indirect.
Feldt [3] and Parmee et al [10] considered the use of
interactive search to explore engineering designs and
better understand design constraints.

In a previous paper [11], we proposed a system that
combines several of these concepts, e.g. interacting with
the system once in a number of generations, rather than
each generation [12]; and adds that of interacting with
a ISBST system by means of allowing the human to
modify the fitness function. The Intermediate Fitness
Function (IFF) describes the current goal and contains all
the information available at a given moment. As a result,
it is reasonable to assume that it should be updated as
that understanding changes or becomes more refined, or
as new information becomes available.

IIT. INDUSTRIAL CONTEXT

The approach presented in this paper was developed
as a result of input from our industrial partner and is
shaped by the context where they operate.

Our industrial partner develops products that involve
embedded software, but where software is not the main
consideration. As a result, knowledge of the domain
and domain specific trade-offs has a greater impact
on the overall quality of the product than expertise in
software development and testing. This type of situation
emphasizes the importance of extensive knowledge of
the domain and experience with the context and limita-
tions of the application being developed. These allow a
domain specialist to better assess quality characteristics
that the complete product must have, as opposed to the
quality level of the software as a separate entity.

We will use a running example to better illustrate
the challenges we faced and to clarify the approaches
we used to address these challenges. The example is
that of a control mechanism for a electric motor, e.g.
powering a mechanical arm. Due to limitations of the
motor itself and the potential for damage in what the
mechanical arm is handling, an average filter is necessary
to convert sharp changes in input into a smoother signal

for controlling the motor. The example is based on a
model filter provided by our industrial partner. The filter
is relatively simple, but common enough to be included
in the standard toolkit of commonly used components.

The system under test (SUT) is the aforementioned
average filter. In this particular example, there are three
major quality goals to be accomplished. First, since the
filter’s purpose is to smooth a signal for use as input
in a motor, it is important that the output is free from
discontinuities which might damage the motor itself, the
arm or anything the arm might be handling at the time.
Second, there are limits to what inputs are acceptable
to the motor, for the same reasons. Last, it is important
that an input signal is as short as possible, to enable
any test case to be human readable and understandable
and to allow assessment of the test case in a reasonable
amount of time.

During the project we held discussions with our in-
dustrial partner and their clients and took part in one
of the training sessions for developing software using a
domain-specific tool.

The approach of selecting domain specialists and
giving them training in developing software using a
domain specific tool illustrates the relative importance of
domain knowledge and experience compared to exper-
tise in software development and software testing. This
guided our approach toward developing a support tool for
domain specialists rather than trying to capture domain-
specific knowledge for the benefit of software engineers.
In addition to domain knowledge and experience, the
system must account for the fact that the domain special-
ists may come from different, albeit related, backgrounds
and are developing different and quite disparate products.

As a result of these efforts, we have developed an
Interactive Search-Based Software Testing (ISBST) sys-
tem. This system searches for test cases that break, or
come close to breaking, the quality goals stated above,
under the guidance of a domain specialist.

IV. OBJECTIVE AND METHOD

As touched upon in the previous sections, the software
in this context is developed by domain specialists rather
than software engineers. The main problem identified as
a result of our discussions with our industrial partner was
that of creating test cases that cover a significant part of
the input space.

Currently, test cases are created ad-hoc for each mod-
ule, based on the developer’s intuition and experience
with similar modules in the past. While this allows past
lessons to be incorporated into the development work, it
also means that new problems are hard to identify.

To address this problem we propose an ISBST system
that would benefit from the exploratory potential of
search based techniques, while still benefiting from the
experience and intuition that domain specialists rely on.

This study aims to answer the following research
question:

RQ1: How can interaction between a human domain
specialist and a search based testing system be achieved?

To answer this question we propose Interactive objec-
tive re-weighting as a means of interaction, especially in
situations where:

o The domain specialist is not a software engineer and
cannot be required to obtain expertise in software
engineering.

o The domain specialist cannot be expected to eval-
uate a significant proportion of the candidates, due
to the large number of candidate solutions as well
as their complexity.

o Maintaining population diversity throughout the
process is an essential part of the approach.

A secondary question is:

RQ2: If such an interaction can be successfully
achieved, what limitations or guidelines can be identified
to ensure that population diversity is not negatively
affected?

To answer these questions, we have used a number of
interviews and workshops, conducted with out industrial
partner, as a basis to develop an SBST system that would
enable the domain specialist to interact by Interactive
Objective Re-Weighting (IORW).

The Interactive Objective Re-Weighting approach re-
lies on the notion of “Interactive Fitness Function” or
IFF. The IFF is a fitness function that can be dynamically
modified during the course of the search, to better match
the current understanding of the requirements on the
system. The IORW is one means of achieving a workable
IFF.

The IFF for a candidate j is computed as follows:

nObjectives
Z Weight; * Value; ; (1)

i=1

IFF(j) =

where IFF(j) is the fitness value of candidate j,
Weight; is the current weight of the objective ¢, and
Value; ; is the fitness value of candidate j measured by
objective ¢. An objective k can be deselected from the
computation by having Weight;, = 0.

Our approach is to use the IFF as a surrogate, evaluat-
ing a number of n optimization steps, between interaction
events. An ‘interaction event’ is one interaction between
the system and the domain specialist. It consists of

the system displaying the current weighting and the
best candidates according to that weighting, and of the
domain specialist conducting a re-weighting if they feel
it is needed.

This will help reduce the burden on the domain
specialist without sacrificing population diversity and
size. The exact value of n may vary from one system
to another.

The IORW approach is presented in more detail in
Algorithm 1.

set the IFF to default;
set currentStep = 0;
while acceptableSolution == false do
if currentStep == interactionStep then
begin Domain Specialist Interaction Step;
solutions are displayed and evaluated by the
domain specialist;
if domain specialist accepts one of the
proposed solutions then

‘ acceptableSolution = true;
else

| acceptableSolution = false;
end
if domain specialist adjusts objective

weighting to better reflect their goals then
change the IFF to reflect the objective

re-weighting;
else
| IFF remains unchanged;
end
currentStep = 0;

else
perform optimization step with the current

IFF;
currentStep += 1;

end

end
Algorithm 1: Dynamic modification of the IFF via
IORW

The default setting for the IFF function is that of
having the weights for all objectives as having an equal
weight, i.e. Vj, Weight; = 1.

Thus, the domain specialists adjust the weights of
the various objectives, based on their understanding
of their relative importance and, in doing so, shape
the IFF for the next set of optimization steps. The
objectives are defined and presented in domain-specific
ways, thus allowing domain specialists to dynamically
generate a new IFF using only concepts that they are
already familiar with and actively using. This can be

Il. Inner Cycle - Focused
on the Software
Engineering Aspects

I. Outer Cycle -
Focused on the
Domain Specialist

Searcher

Objective

Weighting

Interaction Objectives
Layer

Quality
Foci

Candidate
Encoding

Front-end

Candidate Selection

Intermediate
Fitness
Function

Optimizer '

(DE)

)

Human
Domain
Specialist

Obiective Re-weighting

Display component:
- Candidate
- Fitness Scores

Specialized
Display
Information

Quality

System Under Test
SUT Interface
Application Specific
Specializations

Application Specific
SUT Runner

Overview of the ISBST system

Fig. 1.

done without requiring the domain specialist to achieve
proficiency in software engineering in general, and in
SBST in particular.

A. System Design

Figure 1 shows the design of the ISBST system. The
system is split into two major components. The inner
cycle deals with generating the candidates, running the
candidates as inputs to the SUT and evaluating their
fitness according to the IFF. The outer cycle handles
the interaction with the domain specialist, i.e. displaying
candidates and interpreting the feedback provided.

The design is shaped by the need to separate those
components of the system that require interaction from
the domain specialist, from those that can be fully
automated. By achieving this separation, the exposure
of the domain specialist to the underlying SBST system
can be better controlled.

The system keeps the overall structure presented
in [11], while making allowances for the increasing
complexity inevitable in practical implementation.

a) The Outer Cycle.: The outer cycle is an inter-
active search based software system, where the domain
specialist is presented with a set of candidates and, based
on those candidates, they decide if the current objective
weighting is appropriate. If it is not, then the objective
weighting is changed to reflect the current understanding
of the current quality needs.

The design uses some of the fatigue reduction con-
cepts defined in [12]: e.g. requiring human interaction
every n of generations rather than every generation,
reducing the overall number of solutions that have to
be evaluated by the human engineer, and focusing on
aspects that do not require detailed evaluation of each

individual solution. The outer cycle captures those in-
teractions, while abstracting away the automated evalua-
tions and removing the need for direct involvement with
the technical details.

The human domain specialist guides the automated
evaluation by providing the objective weighting that
serve as input for dynamically generating the IFF. More-
over, this is done after the domain specialist is shown
the fittest candidates, as evaluated by the current IFF.
All this functionality is provided by the components of
the outer cycle.

b) The Inner Cycle.: The inner cycle contains the
search based software testing system developing the
potential solution candidates, dynamically generates the
IFF from the objective weights, performs the automated
evaluation of candidates, and interfaces with the outer
cycle and the SUT.

The interface to the SUT is concerned with the mod-
ules required to run the SUT for evaluation. Apart from
information strictly necessary for interaction, the inner
workings of the SUT are hidden.

The inner cycle functions as a traditional SBST sys-
tem, with the Searcher generating the candidates,
using the SUT to run those candidates, and evaluating
them by means of the IFF.

V. IMPLEMENTATION

The outer cycle uses a combination of CoffeeScript,
a variation of JavaScript aimed at simplifying develop-
ment, and the Data-Driven Document (D3) library to
display candidates and obtain feedback from the domain
specialist. D3 is a JavaScript library for the manipulation
and display of data in a browser. It allows visualizations
to be dynamically created, without acting to change
the data itself. Since the outer cycle is concerned with
displaying the candidates, the combination of Coffescript
and the D3 library is a good fit for the purpose.

The inner cycle and the SUT Interface are developed
in Ruby. This was chosen for the relative ease with
which it interacts with other applications, e.g. other
SUTs, interfaces to simulators or interfaces to hardware
test benches, enabling the ISBST to be more extensible
overall.

First, a population of candidate solutions is generated
by the Searcher. Each candidate is converted to a
candidate object and run through the SUT or, by means
of the SUT Interface, through the hardware test bench.
Each candidate then receives a fitness score for each of
the quality objectives that were selected. These scores,
together with the respective weights, combine to form
the IFF score, as discussed above.

¢) Encoding the Candidate Solutions.: Our exam-
ple is that of an average filter, that receives a signal
describing the desired level of output and a number of
steps to reach that level. In practice, our industrial partner
uses a discrete encoding for each signal. Our system uses
a Frame object to contain the input and output values at
a given discrete step. Both are real numbers, with the
outputs being computed by running the inputs though
the SUT.

The candidate object consists of the ordered set of
Frames, and also encapsulates the fitness values mea-
sured for each of the objectives.

When user interaction is required, the candidate ob-
jects are packaged into a JavaScript Object Notation
(JSON) file and made available to the outer cycle.
Search-related meta-information, e.g. fitness values for
each objective, is included in the candidate object, and
therefore available in the outer cycle. This enables the
system to more easily adapt to changes in display
requirements.

VI. EVALUATION

This section presents an initial evaluation of the
ISBST system presented above, and in particular of
the mechanism of Interactive Objective Re-Weighting
(IORW) used to handle the interaction with the domain
specialist.

The criteria by which the success of this evaluation
will be judged are as follows:

o A system can be developed that enables a domain
specialist not familiar with SBST to guide a search
using IORW. Successful use of IORW would prove
the viability of the ISBST system we are proposing.

o The interaction between the domain specialist and
the ISBST system can be shown to have an effect.
In addition, identifying any potential differences
between interaction strategies, would enable further
studies to refine our understanding of the interac-
tion, its benefits and limitations.

The evaluation uses the SUT described above, which
is a Ruby implementation of the filter described in sec-
tion III. The filter is a component of the standard library
used by our industrial partner and offered to their clients.
It was chosen for being a very simple, but common,
component that is actively used in practice. For the
purposes of this evaluation, a number of discontinuities
were injected, to simulate faults in the software.

o Discontinuity (D). Measures the number of dis-
continuities found in a candidate. The aim is to
maximize this objective.

e Upper Limit (UL). Given an upper limit for the
input signal, this objective measures how close a

given value is to that limit and, if the limit is
exceeded, the difference between the limit and the
actual value. The objective is to be maximized, as
the goal is to find the signals that might exceed the
maximum value.

o Length (L). For the purpose of this evaluation, we
consider that a candidate should have close to a
given length. As a result, candidates with lengths
lower than Min frames or higher that Max receive
a positive cost, while candidates with a length
between the two values receive a negative cost. This
objective is to be minimized.

By formulating the interaction in terms of objectives
and their weights, the domain specialist interacts with
representations and objectives that are familiar, and
do not have to acquire additional software engineering
skills.

An instance of IORW signifies that the domain spe-
cialist has re-evaluated their goals and priorities, either
in light of new information becoming available from
outside the system, e.g. changes in goals, domain specific
constraints, or as a result of candidates noticed in the
population of candidates being displayed.

In our example, a domain specialist starts their anal-
ysis of the SUT and their first priority is identifying
discontinuities in the system. The second most important
objective is the length of the candidate.

A set of interaction events were performed at regular
intervals, once every 250 optimization steps. The weights
are given as integers, from 1 to 5.

The set of interaction events in Table I shows an
example of how a domain specialist can interact with
the system, by specifying the relative importance of
the respective objectives. In the example there, the first
run is the default setting, with all objectives of equal
weight. The domain specialist can choose to focus on
one objective, e.g. Event 2, or try to find a more balanced
approach, e.g. Event 3.

Through all the interaction events, the domain spe-
cialist evaluates the importance of each objective and
the candidates they are shown, with the minutiae of the
underly process being hidden from view.

Table II shows the mean fitness values of the displayed
candidates for each quality objective.

An interactive objective re-weighting event, as ex-
pected, results in changes in the candidates selected for
display to the domain specialist, as well as in changes
to the IFF and the candidates that are generated. This
increases the confidence that the re-weighting has a
significant impact on the ranking of the candidates, as
they are displayed to the domain specialist. Since the

TABLE I
EVENT SEQUENCE FOR INVESTIGATING THE IMPACT OF A SINGLE
INTERACTION EVENT ON THE CANDIDATES. THE ABBREVIATIONS:
EV - EVENT, D - DISCONTINUITY, UL - UPPER LIMIT, L - LENGTH

. Weights
Ev | Description) LT T
Describes the status at the beginning
1 of the first interaction event. Initially, 1 1 1
each objective is assigned an equal
weight
The weight of the Discontinuity ob-
5 jective is raised to 5, signifying that 5 1 1

the Discontinuity objective is about 5
times more important than the others
The weight of the Length objective is
raised to 3. Finding a shorter candi-
3 date is more important than the upper 5 1 3
limit, but less important than finding
a discontinuity.

The relative importance of Length
and Discontinuity are reversed. Find-
4 ing a discontinuity is more important 3 1 5
than the upper limit, but less impor-
tant than finding a short candidate.

5 Return to the prioritization in step 3. 5 1 3
TABLE II
MEANS OBJECTIVE VALUES OF DISPLAYED CANDIDATES
Event Discon- Upper Length
tinuity Limit
1 2.333 13755 -6.2
2 3.6 12634 -0.333
3 3.8 5805 -0.533
4 2 3570 -8.866
5 3.333 15032 -2.266

ranking is based on the IFF, it is reasonable to claim
that the re-weighting has an impact on that function and,
through it, on the SBST system.

The issue of validity also needs to be discussed. The
study presented here resulted from our efforts with one
company, in one particular domain. To alleviate this
problem a general SUT was selected and, by treating the
SUT as a black box, the ISBST system is not tied to any
particular implementation. These considerations indicate
that the approach could be generalizable. To ensure such
generalizability, however, further efforts are needed.

An additional issue is that the SUT used for the
evaluation is a simple component. While the filter itself
is simple, it cannot be considered quite a toy example:
it is widely used and present in a toolbox of common
components.

VII. CONCLUSIONS

In this paper we presented an Interactive Search-Based
Software Testing system where the main method of in-
teraction is that of objective re-weighting. The approach

is a novel type of interaction based on our experiences
with our industrial partner and their clients, and is based
on their current testing practices and concepts. The
approach does provide the flexibility and extensibility
needed and allows domain specialists to interact with
an ISBST system. The empirical evaluation indicates
that the approach is viable; objective re-weighting can
help a human domain specialist, unfamiliar with SBST
or SE, interactively guide the search by adjusting their
objectives alone.

REFERENCES

[1] M. Harman and B. F. Jones, “Search based software engineering,”
Information and Software Technology, no. 43, pp. 833-839, 2001.

[2] S. Xanthakis, C. Ellis, C. Skourlas, A. L. Gall, S. Katsikas, and
K. Karapoulios, “Application of genetic algorithms to software
testing,” in Proceedings of the 5th International Conference on
Software Engineering and Applications, Toulouse, France, 7-11
December 1992, pp. 625-636.

[3] R. Feldt, “Genetic programming as an explorative tool in early
software development phases,” in Proceedings of the Ist In-
ternational Workshop on Soft Computing Applied to Software
Engineering (SCASE °99). University of Limerick, Ireland:
Limerick University Press, 12-14 April 1999, pp. 11-20.

[4] M. Harman, S. A. Mansouri, and Y. Zhang, “Search based
software engineering: A comprehensive analysis and review
of trends techniques and applications,” Tech. Rep. TR-09-
03, April 2009. [Online]. Available: http://www.dcs.kcl.ac.uk/
technical-reports/papers/TR-09-03.pdf

[5] P. McMinn, “Search-based software testing: Past, present and
future,” Fourth International Conference on Software Testing,
Verification and Validation Workshops, pp. 153-163, 2011.

[6] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-
based testing for non-functional system properties,” Information
and Software Technology, 2009.

[71 A. Arcuri and X. Yao, “Search based software testing of
object-oriented containers,” Information Sciences, vol. 178,
no. 15, pp. 3075 — 3095, 2008. [Online]. Available: http:
/lwww.sciencedirect.com/science/article/pii/S0020025507005609

[8] S. Mairhofer, R. Feldt, and R. Torkar, “Search-based software
testing and test data generation for a dynamic programming
language,” in Proceedings of the 13th annual conference
on Genetic and evolutionary computation, ser. GECCO ’11.
New York, NY, USA: ACM, 2011, pp. 1859-1866. [Online].
Available: http://doi.acm.org/10.1145/2001576.2001826

[9] R. Feldt, “An interactive software development work-

bench based on biomimetic algorithms,” Gothenburg,

Sweden, Tech. Rep. 02-16, November 2002. [Online].

Available: http://www.cs.bham.ac.uk/~wbl/biblio/cache/http___

drfeldt.googlepages.com_feldt_2002_wise_tech_report.pdf

I. C. Parmee, D. Cvetkovic, A. H. Watson, and C. R. Bonham,

“Multiobjective satisfaction within an interactive evolutionary

design environment,” Evolutionary Computation, vol. 8, no. 2,

pp. 197-222, 2000.

B. Marculescu, R. Feldt, and R. Torkar, “A concept for an

interactive search-based software testing system,” in Search

Based Software Engineering, ser. Lecture Notes in Computer

Science, G. Fraser and J. Teixeira de Souza, Eds. Springer

Berlin Heidelberg, 2012, vol. 7515, pp. 273-278. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-33119-0_21

R. Kamalian, E. Yeh, Y. Zhang, A. Agogino, and H. Takagi,

“Reducing human fatigue in interactive evolutionary computation

through fuzzy systems and machine learning systems,” in Fuzzy

Systems, 2006 IEEE International Conference on, 0-0 2006, pp.

678 —684.

(10]

[11]

[12]

