
An initiative to improve reproducibility and
empirical evaluation of software testing techniques

Francisco G. de Oliveira Neto
Software Practices Laboratory

Federal University of Campina Grande
Campina Grande, Brazil

francisco.neto@computacao.ufcg.edu.br

Richard Torkar
Dept. of Computer Science and Engineering
Chalmers and the University of Gothenburg

Gothenburg, Sweden
richard.torkar@cse.gu.se

Patrı́cia D. L. Machado
Software Practices Laboratory

Federal University of Campina Grande
Campina Grande, Brazil

patricia@computacao.ufcg.edu.br

Abstract—The current concern regarding quality of evaluation
performed in existing studies reveals the need for methods
and tools to assist in the definition and execution of empirical
studies and experiments. However, when trying to apply general
methods from empirical software engineering in specific fields,
such as evaluation of software testing techniques, new obstacles
and threats to validity appears, hindering researchers’ use of
empirical methods. This paper discusses those issues specific
for evaluation of software testing techniques and proposes an
initiative for a collaborative effort to encourage reproducibility
of experiments evaluating software testing techniques (STT). We
also propose the development of a tool that enables automatic
execution and analysis of experiments producing a reproducible
research compendia as output that is, in turn, shared among
researchers. There are many expected benefits from this endeav-
our, such as providing a foundation for evaluation of existing and
upcoming STT, and allowing researchers to devise and publish
better experiments.

I. INTRODUCTION

Much effort has been focused in improving the approaches
and techniques to empirically evaluate software engineering
research. The empirical software engineering community has
gathered effort to change researcher’s minds and start dissem-
inating the thought of evaluation methodologies as also an
end instead of just a mean. Fortunately, several researchers
have become aware of the importance of empirical evaluation.
Performing an experiment with solid statistical analysis and
validation is acknowledged to be a good practice among
researchers and are often a requirement to achieve publications
in several journals and conferences with high impact factors.

In fact, we have lately seen a trend that researchers are
advised to provide a Reproducible Research Compendium
(RRC) when publishing studies. The RRC is a container for
all components necessary to reproduce the research, such
as papers describing the technique and the computational
environment where the study was executed. However, how
many researchers are really able or prepared to perform experi-
ments? A solution to disseminate proper usage of experiments
is to encourage reproduction, replication and re-analysis of
experiments.

Through replication and extension of experiments, re-
searchers can investigate and extend the results to better
understand experiments, discover improvements or even new
applications for the investigated techniques [1]. However,

migrating those approaches and techniques to specific soft-
ware engineering areas, such as software testing, can lead to
many validity threats that inexperienced experimenters tend to
overlook, or even disregard.

This paper focuses on issues and solutions regarding evalu-
ation of software testing techniques (STT). Those techniques
rely on several concepts related to computer science and
other disciplines. However, studies indicate a general lack of
empirical evaluation of the techniques proposed [2], [3], which
leads to a set of techniques devoid of any formal foundation
that are risky to transfer to industry. The reason is that, most
of the times, the techniques require executable artefacts such
as source code or test cases, which are often unavailable [4].
Furthermore, empirical studies usually lack details in their
description, raising concerns about the reliability of the results
obtained, or at the least, introduce difficulties in replicating and
extending experiments.

Researchers have been discussing the issues and needs for
evaluation of software testing techniques in general [2]–[6].
However, no methodology was yet proposed to perform studies
with software testing techniques focused on reproducibility.
Besides hindering reproducibility, this problem also affects
definition and execution of empirical evaluations of STT.
In fact, studies in literature state that empirical methods in
software testing require specific guidelines; to improve the
research and reporting processes, or to establish common
standards used to conduct and report experiments [4], [6].

This paper proposes an initiative, by exposing the issues
and existing contributions towards the general methods to ex-
periment with software testing techniques and then proposing
a collaborative effort of reproducing and sharing experiments
with STT. The goal is to build a tool and a repository that
allows experimenters to reproduce their fellow researchers’
experimental findings. The solution is to produce reproducible
research compendiums containing the specific elements of
software testing research. We will refer to these specific com-
pendia as Reproducible Software Testing Research Compendia
or simply RSTRC.

As a consequence, we encourage standardization and feed-
back regarding evaluation of proposed STT. We guide our
discussion according to the following questions: RQ1: Which
are the current problems with evaluation of STT? RQ2:



Which specific reproducible attributes can be found in studies1

concerning software testing? Section II discusses RQ1, while
discussion regarding RQ2 is presented in Section III. Finally,
Section IV presents concluding remarks and the next steps
towards our proposed initiative.

II. WHAT ARE THE ISSUES?

The empirical software engineering community has been
dedicating efforts in breaking down the fundamental elements
of an experiment in software engineering. Despite the efforts
and discussions regarding appropriate methods to conduct
experiments in software engineering, evaluating STT is not
easy since many information and artefacts are required in order
to thoroughly evaluate the capabilities of a testing technique.
First of all, software testing itself is a very multidisciplinary
area, that is able to comprise distinguished and combined types
of software such as stand alone, web services, real time, critical
systems, embedded systems, etc. Therefore, drawing a precise
line to establish the scope affecting the test is very challenging.

At the same time, trying to draw that line is one of the
most important steps to define a good experiment, since it
allows researchers to identify: context, subjects, limitations,
and more importantly, which variables can/must be controlled.
Already in 2004, Juristo et al. stated that our testing technique
knowledge is very limited, given that most of it is based on
impressions and perceptions [5]. Engström et al. and Dias Neto
et al. reached similar conclusion years after that statement, still
pointing to a general lack of empirical evaluation of specific
types of testing techniques (respectively, regression and model-
based testing) [2], [3]. Why are we not seeing, over the years,
a significant increase in the number of empirical findings
regarding STT?

There is an array of classifications [1], [5], configurations
[7] and guidelines [8], [9] that help researchers to define,
conduct and report their experiments. But manifesting those
methods for constructs specific to STT evaluation is very
challenging. For example, statistics often require large sets
of significant data (usually hard to obtain or unavailable) to
achieve conclusive results. In addition, the need for human
involvement in testing makes the generation of a large number
of test sets infeasible. Similarly, obtaining defect data for
larger test sets is nearly impossible since detection of defects
will always be, to a certain degree, a stochastic process [4].

Availability and access to information is still limited when
evaluating STT. For instance, the System Under Test (SUT)
may not be ready for testing, test cases may present limited
coverage, defect data is unknown, among others. Even when
available, many researchers disregard the representativeness of
their artefacts (e.g. choice of inappropriate programs or unreal
defects) [5] or even the minimum sample size required to claim
statistical significance of results. That creates gaps and validity
threats that seriously compromise credibility of results. There
are existing techniques for stochastic generation of data for

1The studies may comprise research focused on software testing, other
fields of computer science, as well as other disciplines from both industry
and academia.

testing [10], [11]. More specifically, they rely on models to
generate well-formed data. Those types of strategies enable
control over automatic generation of large sets of artefacts,
hence assisting experimenters who struggle with availability
and accessibility of objects in an experiment. Thus, existing
approaches can already be applied to overcome those issues.

Besides getting data, organization and analysis of all ele-
ments in an experiment intimidates many researchers. Devising
an appropriate experimental design to comply with one’s hy-
potheses, objectives and variables is overwhelming and a poor
design lead to confusing reports. Similarly, lack of experience
and/or knowledge in statistics hinder researchers to harness
full potential of their data causing them to either enhance
or destroy credibility of conclusions. For example, many
researchers recklessly use parametric tests (such as ANOVA or
t-test) as a rule of thumb, without proper investigation of its
assumptions, sometimes leading to erroneous conclusion [12].

In its early start, the empirical software engineering com-
munity turned to other disciplines that have been dealing with
empirical evaluation over decades (e.g. biology and social
sciences) in order to overcome general difficulties in managing
data, subjects, statistical analysis, etc. The software testing
community seems to be performing more experiments. How-
ever, they neglect validation of existing experiments and pro-
posal of innovative strategies to help their fellow researchers
in overcoming the specific challenges of evaluating STT. That
being said, validation of experiments needs to be performed
through reproduction, replication or re-analysis of existing
experiments with STT.

III. WHAT CAN WE DO?

The initiative begins with a collaborative effort within
the testing community to share and standardize methods
and artefacts used to evaluate STT. Therefore, the research
comprises the state of art of empirical studies in software
engineering, software testing, statistics, experimental designs,
among others. The outcome is the development of techniques
and tools to provide support and execution of experiments.
Therefore, researchers will extend the body of knowledge by
proposing new methodologies to perform reproducible studies
with STT. Even though replication and re-analysis are just as
important as reproducibility, we believe that focusing first in
reproducibility will allow researchers to quickly overcome the
general lack of availability and accessibility of data required
to replicate/re-analyse the existing experiments. Thus, as the
initiative strengthens, we enable more replication because the
community will rely on a larger repository of experiments.

In summary, we intend to encourage practices similar to
the initiative of reproducible software engineering but adapt-
ing them to the software testing community. We begin by
defining input and output of our process. The input are the
study parameters, such as the objects of study, a SUT, sets
of test cases, number of subjects, a general hypothesis and
goals. The output, in turn, is a compendium (i.e. a package),
named Reproducible Software Testing Research Compendium



Empirical 
SW Eng.

SW Testing

Statistics

Experimental 
Designs

Experimenter

Experiment’s
Definition

Study
Parameters RSTRCTool

Operationalization

Experimenter

Protocol

Population

Fig. 1. Proposed reproducible research initiative for evaluation of STT.

(RSTRC), containing all elements able to describe and re-
execute the experiment. A summary is presented in Fig. 1.

Each study parameter will be divided into the following
categories: operationalization, protocol, population and ex-
perimenter. Those four elements cover the general configu-
ration of an experiment, as discussed by Goméz et al. [7].
The operationalization include elements describing the act of
translating a construct into its manifestation; the protocol is
the set of materials, apparatus, forms and procedures used in
the experiment, whereas objects and subjects belong to the
population category and, finally, the experimenter includes the
people involved in the experiment.

That allows classification of elements within RSTRC as
well, enabling search engines to determine which are the
more/less frequently used constructs, tools, response variables,
forms, among others. By analysing the elements in those cate-
gories, we can determine which are the reproducible elements
for STT research and ultimately the guidelines required to
apply these elements. Given that there are many known (and
perhaps some unknown) study parameters, we intend to first
determine the elements of an RSTRC. They must be based on
strategies to improve the description of studies and methods
to facilitate access to artefacts. The resulting guidelines will
then, allow researchers to converge their modus operandi, thus
leading to standardization among reported results within the
software testing community.

That convergence allows identification of the most signif-
icant attribute(s) to reproduce STT research2. Although that
may sound greedy, we believe that the targeted information
is already dispersed within existing surveys, systematic re-
views and publications that discuss fundamental metrics and
artefacts required to evaluate STT. Thus, raising awareness
and encouraging reproducibility can lead to a massive search
and, eventually, those fundamental elements, significant for
evaluating STT, will become recurrent in most empirical
evaluation.

On the other hand, there are complementary attributes found
only in applications of STT in industry, since, when applied to
production, other elements of an STT appear, such as training
of staff, testers’ expertise, etc. However, two main aspects
of reproducibility may hinder collaboration with practitioners:
sharing and availability of information. That has already been
an issue with existing evaluation in industry due to non-

2That can happen initially at short term, but then refined at long term.

Execution
Data

Define the 
Experiment Techniques Variables

Execute the 
Experiment

Observe
Execution

STT
Data

Analyze the 
Results

R Scripts
(Analysis)

R Scripts
(Plots)

Processed
datasetsPresent the 

Results

Results
Dataset

Build
RSTRC

RSTRC

Tools

Definition Execution Benchmarking

Analysis

Packaging

Presentation

External
Artifacts

Tool

RR
Repositories

Datasets Designs

Data extraction methods

Written
Reports

Study
Parameters

Fig. 2. Overview of a tool that executes experiments with STT.

disclosure agreements. Although some industrial data can be
shared sometimes, we cannot assume that full disclosure is
allowed. Consequently, we suggest two different categories
of RSTRC: industrial and academic. Researchers sharing and
using the first category should expect limited availability and
accessibility due to involvement with practitioners, whereas
those using the second category can assume full disclosure and
access regarding methods and artefacts used. Note that, unlike
replications, reproduction of experiments allows for different
artefacts and even contexts. Therefore, even if full disclosure is
unavailable, some aspects of the study can still be reproduced.

As study parameters are formalized and the protocol for dif-
ferent experiments become available through shared RSTRC,
we can start to build a tool to allow automatic execution of
experiments. The idea is that researchers can implement their
STT, execute experiments and share their RSTRC by using in-
terfaces and libraries. In turn, other researchers can reproduce
studies or execute different techniques with common interfaces
to compare results. Fig. 2 shows an overview of the tool and
its interacting modules. The activities executed automatically
are marked as shaded rectangles, while artefacts and libraries
of the tool are white documents.

Each module covers stages of an experiment, and the idea is
that these artefacts and libraries are reused during reproduction
of experiments. For example, specific experimental designs
can be stored to be reused in other studies; different methods
can provide default measures for widely used dependent
variables in testing, such as Average Percentage of Fault
Detection (APFD), or recall. Also, different studies may use
the same variables, techniques or data extraction methodology.
By sharing the tool and the RSTRC that is produced, we



encourage reproducibility practices within the community.
Furthermore, the tool will also provide benchmarking of

experiments being executed, for example, time to execute the
entire experiment (with or without replications), number of
data points collected, metrics of the artefacts used (size in
LOC, number of test cases, etc). In the end, researchers will
be able to compare performance of execution of different
studies, leading, for example, to the creation or improvement
of experimental designs. Ultimately, we would also be able
to perform meta-analysis, focusing on, for instance effect size
[12] to discern the total effect a number of test techniques
have on a particular domain, e.g. model-based testing.

Besides providing execution of empirical studies, R3 scripts
will be implemented and included in the tool to provide
automatic statistical analysis of data collected during the
study. Moreover, experienced experimenters can also write
scripts to simplify analysis of complex experimental designs
(e.g. factorial designs). For instance, he or she can write
scripts to compare samples, obtain p-values, coefficients, linear
regression models, etc. However, there will be a level of
dependence between the analysis and the response variables
investigated, or subjects used. Therefore, the scripts need to
consider the study parameters provided as input.

Regarding evaluation of the tool, we target two aspects: (i)
The increase in reproducibility. (ii) Its adequacy to evaluate
STT. For that, we will initially, reproduce studies described
in research literature. Researchers can then assess the re-
producibility of the ‘original’ study using existing scoring
methods [13]. Then, they reproduce the experiment using the
tool, resulting in a new compedia (in this case, an RSTRC).
The goal is to observe an increase in the reproducibility scores
when comparing the RSTRC obtained using the tool and the
compendia of the original study.

IV. CONCLUDING REMARKS

This paper discussed issues and goals regarding the need
for more reproducible research with software testing tech-
niques. Based on existing achievements and contributions from
empirical software engineering, we proposed introduction of
guidelines, artefacts and methods to encourage researchers to
produce compendia targeting evaluation of STT (RSTRC).
The objective is to define, execute and deploy experiments
with improved description, accessibility and availability of
required artefacts to reproduce, replicate and re-analyse the
experimental findings. Through a collaborative effort among
researchers, sharing and reproduction allows the community
to identify which experimental findings are consequences of
an actual cause effect relationship, rather than an artefactual
result. That leads to a more reliable body of knowledge,
increasing confidence in existing research and setting high
standards for upcoming testing techniques.

On the other hand, that initiative requires a lot of effort
from the community, by committing to set and disseminate
standards. As of April 2014, we acquired funds to conduct

3http://www.r-project.org/

this research project as a collaboration between the Federal
University of Campina Grande (Brazil) and Chalmers and the
University of Gothenburg (Sweden) under the Science Without
Borders (SWB)4 scholarship. We are currently working on
the definition of the RSTRC and designing our tool, hence
our next steps is gathering collaborations and feedback from
both industry and academia in order to start building our
shared repository of reproducible research. Ultimately, the
main benefit with this project is to encourage researchers
and provide them an early familiarization with empirical
methods. Proper evaluation of results based on solid evidence
obtained through consistent statistical analysis significantly
benefits the state of art, researchers and the community itself.
Consequently, researchers become more critical towards the
quality of results achieved, and more cautious and demanding
regarding planning, development and presentation of their
work.

REFERENCES

[1] O. Gómez, N. Juristo, and S. Vegas, “Replication, Reproduction and
Re-analysis: Three ways for verifying experimental findings,” in 1st In-
ternational Workshop on Replication in Empirical Software Engineering
Research, RESER 2010, vol. 35, 2010.

[2] E. Engström, M. Skoglund, and P. Runeson, “Empirical evaluations of
regression test selection techniques: a systematic review,” in Proceed-
ings of the Second ACM-IEEE international symposium on Empirical
software engineering and measurement, ser. ESEM ’08. New York,
NY, USA: ACM, 2008, pp. 22–31.

[3] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: a systematic review,”
in Proceedings of the 1st ACM international workshop on Empirical
assessment of software engineering languages and technologies. ACM,
2007, pp. 31–36.

[4] L. Briand and Y. Labiche, “Empirical studies of software testing tech-
niques: Challenges, practical strategies, and future research,” SIGSOFT
Software Engineering Notes, vol. 29, no. 5, pp. 1–3, 2004.

[5] N. Juristo, A. Moreno, and S. Vegas, “Reviewing 25 years of testing
technique experiments,” Empirical Software Engineering, vol. 9, no. 1–
2, pp. 7–44, 2004.

[6] S. U. Farooq and S. M. K. Quadri, “Empirical evaluation of software
testing techniques – need, issues and mitigation,” Software engineering:
an international Journal, vol. 3, no. 3, pp. 41–51, 2013.

[7] O. S. Gómez, N. Juristo, and S. Vegas, “Understanding replication of
experiments in software engineering: A classification,” Information and
Software Technology, vol. 56, no. 8, pp. 1033–1048, 2014.

[8] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, Apr. 2009.

[9] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer, 2012.

[10] F. G. de Oliveira Neto, R. Feldt, R. Torkar, and P. D. L. Machado,
“Searching for models to evaluate software technology,” in Proceedings
of the 1st International Workshop on Combining Modelling and Search-
Based Software Engineering, May 2013, pp. 12–15.

[11] R. Feldt and S. Poulding, “Finding test data with specific properties
via metaheuristic search,” in 24th International Symposium on Software
Reliability Engineering (ISSRE), 2013, Nov 2013, pp. 350–359.

[12] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[13] J. M. González-Barahona and G. Robles, “On the reproducibility
of empirical software engineering studies based on data retrieved
from development repositories,” Empirical Software Engineering,
vol. 17, no. 1-2, pp. 75–89, 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s10664-011-9181-9

4Grant n. 88881.030428/2013-01, project n. 152146. More info about SWB
here: http://www.cienciasemfronteiras.gov.br/web/csf-eng/


