
Optimizing Verification and Validation Activities for
Software in the Space Industry

Robert Feldt, Bogdan Marculescu
Computer Science & Engineering

Chalmers University of Technology
Göteborg, Sweden

robert.feldt@chalmers.se

Jan Schulte, Richard Torkar
Blekinge Institute of Technology

Ronneby, Sweden
jan@janschulte.com

Philip Preissing, Erika Hult
RUAG Space AB
Göteborg, Sweden

philip@philippreissing.com,
erika.hult@ruag.com

Contact author (and presenter): Robert Feldt,
robert.feldt@chalmers.se, phone: +46-733-580580, fax:
+46-455-385057

Abstract—Software for space applications has special
requirements in terms of reliability and dependability
and the verification & validation activities (VAs) of these
systems often account for more than 50% of the develop-
ment effort. The industry is also faced with political and
market pressure to deliver software faster and cheaper.
Thus new ways are needed to optimize these activities
so that high quality can be retained even with reduced
costs and effort. Here we present a framework for the
management and optimization of verification & validation
activities (VAMOS). An initial evaluation of the framework
based on historical data as well as data extracted with a
new tool has been done and are described briefly.

I. INTRODUCTION

Software for space applications has special requirements
in terms of reliability and dependability which requires the
space industry to put a special focus on quality and standard-
ization. The involved costs are huge, failures can be fatal and
faults can be hard to fix after deployment. In recent years,
the space industry is faced with rising political and market
pressure to produce their products in shorter time and with
less cost. The industry therefore aims at reducing their costs
while keeping the same or achieving even a better quality
of their products. For general software development, studies
suggest that about 50% of total development costs account for
quality assurance [1]. For quality-focused industries like the
space industry these figures can often be even higher. Cost
optimization of the verification and validation (V&V) process
thus seems promising.

In an ongoing collaboration between Swedish universities
and aerospace companies we have investigated ways to co-
optimize cost and quality. In the first part of the work the focus
was on analyzing the current situation in two case companies;
how they work and the challenges they face regarding verifi-
cation and validation [2]–[4]. The main problems found were:

faults slip through between V&V activities, which means that
faults are found in later stages than they could have been
found, which in turn accounts for avoidable rework and thus
higher costs; the selection of different V&V techniques as well
as their interdependencies are not clearly understood; and the
organizational costs that are related to compliance to space
engineering standards are high.

In the second phase of the work a framework for managing
and optimizing the verification and validation activities in
space software development was developed [5]. Knowledge
of the costs in relation to their benefits is necessary [6] to
be able to minimize or improve those with no added value.
Knowing the cost is also highly beneficial when speaking with
stakeholders since the added cost can be traded off against
benefits. There is also evidence that financial justification for
software quality efforts makes them easier to justify and gives
a better basis for implementing them [7].

This paper summarizes the work on the framework and
also introduces a new tool that has been developed to extract
metrics about the effectiveness of code inspections.

II. BACKGROUND AND CASE COMPANY

A. RUAG Space AB

RUAG Space AB (RUAG) was formerly known as SAAB
Space AB but was then acquired by RUAG Space. RUAG
has a very long experience in the design, development and
delivery of both hardware and software for computer and data-
handling products for space applications. The main product
areas are Data management systems, Fault-tolerant computers
and processor products, Payload control computers, Data pro-
cessing, and Small mass memories. The software developed
by RUAG for these computers is in the range from small boot
software to full application software, but the main focus is
on hardware-near, embedded, real-time software. The software
development process used is based on the ECSS standards,
mixed with an integration driven development approach. The
company is headquartered in Göteborg, Sweden and employs
in total 360 people, of which about 30 work in the software
unit. Typically up to five projects are developed simultaneously



in varying team sizes of about 10 people. The software is
developed mainly in C but with some low-level parts written
in assembler.

A management and optimization framework for verification
and validation activities called VAMOS was recently created
in relation to RUAGs development process [5]. In VAMOS
the cost reducing effort is essential, however to actually be
able to measure and reduce costs the approach needs to
be complemented [6]. This paper summarizes VAMOS and
presents a new tool that is based on the framework.

B. Related work
Instead of focusing on a single verification and validation

activity, both research [8], [9] and industry experience [10]
show that combining different VAs can be more efficient in
finding defects. To keep up with the constant market pressure
that is omnipresent in industry, further investigation is neces-
sary to guide industry on how to select VAs to maximize the
defect detection efficiency while minimizing the effort spent.
Some initial work that has been done towards the creation of
such frameworks is presented in the following.

Wojcicki and Strooper present an iterative selection strategy
(ISS) for verification & validation activities [11]. The VAs
are thereby firstly selected by their efficiency in order to
maximize completeness, and secondly by the effort, i.e. the
cost, they require. Based on the data collected while applying
the technique, the selection is refined iteratively.

In [12] the concept of Fault-Slip-Through (FST) is pre-
sented. In this approach, the faults found are categorized
according to which phase they belong to, i.e. in which VA
they should have been found. Based on these findings and
the effort of the VA, the improvement potential for each
activity is calculated. In contrast to classic fault measurement
techniques like phase containment metrics [13], faults-slip-
through considers the most cost-effective phase to find a
defect.

Wagner [14] proposes a more analytical approach. The
defect detection techniques are thereby compared using an
economical metric, namely the return on investment (ROI).
The model also considers the effect of combining different
defect detection techniques.

A framework for the comparison of testing activities and
formal verification is presented in [15]. However, this approach
focuses more on studying the synergy and relationship of
these two activities and doesnt give any advice on how a
combination of them can be optimized.

Apart from the work that focuses on optimizing VAs in
particular, frameworks have been proposed like QIP [16]
which target process improvement in general. They typically
follow an iterative process based on a problem description or
analysis, a measurement phase, a root-cause analysis followed
by an implementation phase.

III. VAMOS
Figure 1 gives an overview of the VAMOS framework with

its five steps (Define, Measure, Analyze, Improve, Implement)

Fig. 1: Overview of the VAMOS framework

and two supporting quality gates/models (ADC and MOM).
Four of the steps are used in consecutive iterations of the
development. As a pre-cursor the Define step details what are
the overall aims of using VAMOS. In the first iterative step,
the necessary data is measured. This data is then analyzed
to find out the problems in the VAs. The analysis is based on
FST concepts. In the improvement phase, adequate changes are
developed to address the identified problems. A static evalu-
ation of the changes are done with respect to their predicted
benefit. In the last step, these changes are implemented in the
development process. Since this is an iterative cycle, the actual
benefits of the change will be measured in the next iteration
and thus, can be directly evaluated.

Since VAMOS is based on the FST [12] and the ISS [11],
it requires similar inputs. These are the defect data, i.e. how
many faults are found by each VA, and the cost data, i.e. how
much does it cost to perform the VA and how much does
it cost to fix a defect. Furthermore, a fault classification is
needed which is used to classify the defects and facilitate an
analysis of the root causes of the identified defects.

To make sure existing measurements meet the necessary
quality to be reused in the framework and to facilitate the
development of new measurement processes for VAs or com-
panies that do not yet have one, two quality gates surround
the framework. The Measurement Options Model (MOM), is
used to assure the quality of the cost and defect data but also
to ensure that as little data are collected as possible and that
it can be collected as efficiently as possible. The Adaptive
Defect Classification (ADC) is used to guarantee the fault
classification is usable for the framework or, if it is not, to
help develop a new fault classification which is adapted to the
company and the domain the company is working in. Together,
the MOM and ADC ensures that VAMOS can be adapted to
specifics of individual organizations; they thus help generalize
the framework.



IV. INITIAL EVALUATION OF VAMOS
VAMOS and its components have been evaluated in a

number of steps as described below.

A. Company-specific Defect Classification Scheme
Before conducting this study, the company did not use

a consistent and internally developed defect classification
scheme. Defects were either not classified or classified using
the default classification scheme from the vendor of the bug-
tracker in use. This scheme was not adapted to the companys
domain or the VAMOS framework. Hence, a defect classifica-
tion had to be developed that was tailored for the framework
and the domain of embedded aerospace applications. There-
fore, the fault classification was created from scratch based on
the ADC.

The developed fault classification was reviewed in a meet-
ing with four representatives from RUAG. The people were
chosen so that a responsible and experienced person for every
VA was present. The meeting resulted in several minor changes
as well as a change in priorities of classes, but no changes to
the fault classes themselves.

The final classification (major categories) was:
• HW interface
• Timing/Concurrency
• Algorithm / Interface
• Robustness
• Understandability
• Beautification
This is notably simpler than if a standard solution like ODC

would have been used [17]. This simplicity results in a simpler
framework which is more likely to be used and thus give the
type of benefits that are aimed for.

B. Mesurement Options
An extensive quality analysis of the currently available data

sources at RUAG revealed that no measurement fully satisfies
the demanded quality requirements. Hence, no measurement
may be used without modification in VAMOS. Therefore,
a measurement options catalog was developed to derive the
measurements for each VA. Each measurement option for each
VA was then rated according to its fixed effort, variable effort
and accuracy. Additionally, it was evaluated how to perform
measurement of the removal of defects and of regression
effects. The list was then sorted and filtered according to the
process to achieve the final list of measurement options for
each VA.

The measurement options catalogue and the rating of them
were performed by the developers. This was done to avoid
having several meetings with responsible persons from RUAG
and to interfere too much with their daily work. Since the
measurement options may require changes in the processes, it
was however not possible for the researchers to decide whether
tools and documents may be changed and how much effort
can be spend on the measurements. Therefore it was decided
to hold a workshop with the head of software development

and two project managers to verify the measurement options,
discuss alternatives, get additional feedback and possibly pro-
pose other measurement options. The measurement options
were in general perceived positively and only small changes
and improvements were proposed.

C. Actual Evaluation
The evaluation was performed on historical data from a

finished project. Here we only discuss the evaluation and its
results from a subset of the investigated process phases.

A design review was performed by three different reviewers.
The historic analysis was done by evaluating the defects
reported in these three review documents. It revealed that most
faults were of the types Understandability and Beautification.

For code inspection most defects that had been found were
Understandability defects. Additionally a lot of Beautification
defects are found. Almost none of these faults had slipped
through (in the FST sense), i.e. almost all understandability
and beautification faults could only have been found in CI.
This usually means that no problem exists. However, because
of the large number of defects it might be desirable to reduce
this number of defects by developing means to prevent these
defects from occurring. More important and interesting is that
a large number of fault slip-through was seen in interface
faults from the design review to the code inspection. This
indicates that the design review needs to be improved. Another
significant fault slip through exists from the unit testing for
algorithm and robustness defects.

Based on these, and similar, VAMOS steps the final analysis
revealed that the design review had the highest improvement
potential for interface faults. Thus, the interface faults from
the code inspection sheets were further analyzed by doing a
root-cause analysis.

This resulted in the conclusion that the ‘missing interface
description’ defects can be prevented from reappearing by
having automatic checks for empty descriptions in the design
documents. The ‘unnecessary operations or constants’ defects
can similarly be checked by an automated tool. Based on
cost data the actual number of hours to be saved by these
improvements could be calculated. Thus any effort and costs
can be traded off against future benefits.

V. DATA EXTRACTION FROM CODE INSPECTION LOGS

Code inspection is essentially a qualitative process that
results in a certain code passing or failing on a number
of points that are of interest. These points of interest that
the code must pass before clearing the code inspection are
hereafter called checkpoints. The checkpoints describe certain
standards that code must fulfill in order to conform to the
quality requirements of the company. A code inspection sheet
gives qualitative information regarding whether or not that
code passed the inspection with respect to the checkpoints
mentioned above.

The method code inspections are held at the moment,
however, does not allow any quantifying information to be
centralized for a given project. While all code inspection sheets



contain the same checkpoints, there is no way to clearly and
efficiently determined which of these checkpoints cause the
rejection of certain code and, as a result, which kind of fault
is more commonly found during the inspection. To deal with
this aspect, an internal tool has been developed. The purpose
of this tool is to identify, for a given project, what checkpoints
were used in the code inspection sheets and how many times,
i.e. for how many documents, were these checkpoint passed,
failed or not applicable.

This is achieved by analyzing all the code inspection sheets
and comparing the checkpoint against a library of checkpoints
encountered so far. Such a design enables further extensions,
should they be needed. One example of such an extension is
the automatic generation of code inspection sheet templates by
selecting the required checkpoints from a library. This would
reduce the number of cases where several such checkpoints
have different wording but a basically similar meaning.

The purpose of this tool is to offer an overall view of
the code inspection documents resulting from a project. The
tool enables the user to get information regarding which
checkpoints have failed more often and how many times such
failures have occurred. Information is also stored regarding
how many times the checkpoint has been passed and how
many times it was deemed not applicable, since projects may
contain more or less code, any attempt at analysis must take
the relative number of failures into consideration rather than
the absolute number.

VAMOS is mostly concerned with the most efficient and
effective ways of finding faults, since the purpose is to
minimize the cost associated with the detection and repair of
faults. RUAG has identified in a previous study code inspection
as being the most efficient way of finding faults within the
software. This evaluation, however, cannot be proven until
some measurements are introduced that enable such compar-
isons to be made between different validation activities. This
tool is a first step towards that objective. By creating some
measurement of the faults found with this particular validation
activity, a baseline is created against which further work can
be measured. The ability to add quantitative information to
the available qualitative information is the starting point for
any attempt at introducing measurements based comparisons
between validation activities.

The tool is designed to handle any type of validation activity
that relies on the passing of certain checkpoints, and thus is
not limited to code inspection sheet analysis. As such it can
form a basis for a comparison between any validation activities
that fulfill that description. Since the focus of VAMOS is to
compare validation activities based on strict metrics, this tools
offers the starting point of such an evaluation.

VI. DISCUSSION

During our evaluation it was uncertain whether an applica-
tion of VAMOS on historic data could be performed. However,
in the end performing it even on incomplete data proved
to be very valuable. It helped to better judge the effort of

applying the framework and to find practical problems in the
process steps. Furthermore, it showed the benefit of VAMOS
and also aided in communicating it among the organization,
because people have a connection to the historic project and
are therefore much more interested in the results. It is also
interesting to compare the results of the dynamic validation
to the implicit assumptions of RUAG about their process, e.g.
which activities are effective and which are not.

For the quality of results, it would of course be the best to
measure every single data item. However, in industrial contexts
this is not possible because of the overhead associated with it.
Therefore, different measurement levels have to be supported:
from direct measurement over sampling to estimations or
even not measuring a particular figure at all. While this,
especially for researchers, might often seem unscientific, there
is no way around when developing concepts to be applied in
industry. Instead, the companies should be assisted in doing
their estimations and samplings in the best way to achieve a
maximum accuracy. The MOM is a promising effort in this
direction. The fairly simple and limited measures it resulted
in is a benefit compared to more general process improvement
solutions.

Since VAMOS is based on FST, it takes into account cost
considerations. Therefore, it does not aim for just improving
any VA, but for improving the VAs in the most cost-effective
way. Additionally, it helps to find out which VAs do not find
the faults they are supposed to find.

Furthermore, VAMOS provides an overlap factor to analyze
whether two different VAs find the same kind of faults and
it is more cost-efficient to remove one of the VAs (either
completely or only for a certain fault type). Although, it may
not be possible to remove a VA because of standards that has
to be followed, this allows a company to show to its customers
what the different VAs cost and what the cost for quality is.

Therefore, VAMOS combines the benefits of the ISS, i.e.
the optimization of the selection of VAs, with the benefits of
the FST, i.e. the optimization based on the faults that cost
the most. As mentioned before, VAMOS provides concrete
recommendations on measurements, analysis and improve-
ments. In contrast to FST, VAMOS defines ways to derive
the improvements from the analysis. Improving VAs to find
defects earlier leads also to a better quality of intermediate
releases, which in turn improves customer satisfaction and
lowers the amount of support a company has to provide during
these releases.

The biggest drawback of VAMOS is that it requires several
measurements, which is not only true for VAMOS, but for any
process improvement framework that relies on empirical data.
To limit this overhead, the MOM aims for measurements that
require a low effort and different measurement levels exist.

Although VAMOS incorporates cost-considerations, it does
not take into account intangible benefits. However, VAMOS
also supports the calculation of other figures such as the return
on investment (ROI), which can incorporate these benefits if
they can be expressed as a monetary value.



A further drawback is that the framework requires that the
developer classifies the defects according to the VA where they
could have been found and the fault type. Since this can result
in errors, it may be necessary to adjust the fault types and train
the developers.

VII. CONCLUSION

This paper presented a framework for the management and
optimization of verification & validation activities (VAMOS)
which was developed at the RUAG Aerospace Sweden AB
in Göteborg. The framework allows for an evaluation and
comparison of VAs according to their efficiency and effec-
tiveness and furthermore for a process improvement that takes
into account economic aspects. No such framework currently
exists and previous work is either targeted at general process
improvement or solves only parts of the problems. Specifically,
it expands the concept of FST to an iterative framework that
also defines how to derive improvements and calculates the
benefit of them. Furthermore it enhances the ISS by not only
trying to have a minimal set of VAs, but also by trying to
improve existing VAs.

VAMOS follows an iterative approach similar to Six Sigma
or QIP and is furthermore based on the concept of fault-
slip-through and an existing iterative selection strategy for
verification activities. Thus it combines the benefits of FST,
i.e. to take into account cost-considerations to improve only
the VAs with respect to the most expensive defects, with the
benefits of ISS, i.e. to find the optimal and most cost-efficient
combination of VAs.

Using data of an historic project at RUAG, the framework
was evaluated by performing a first iteration of it on this data.
The results showed that VAMOS can reveal the problems in
the process and deliver useful improvement results. In the
case study problems in the design review were discovered
with VAMOS which were also confirmed by the software
development team in a team meeting. A tool to extract metrics
from code inspection logs was later developed to further help
in verifying VAMOS. The script helped find checks in code
inspections that frequently find defects or are not applicable.
Future work will involve evaluating VAMOS more realistically
in ongoing projects.

ACKNOWLEDGMENT

This work has been supported by the Swedish National
Space Board under the ‘National Space Research Project’.

REFERENCES

[1] G. Myers, T. Badgett, T. Thomas, and C. Sandler, The art of
software testing. Wiley; 2nd edition, June 2004.

[2] R. Feldt, R. Torkar, E. Ahmad, and B. Raza, “Challenges With
Software Verification and Validation Activities in the Space
Industry,” in 3rd International Conference on Software Testing,
Verification and Validation (ICST 2010), April 2010.

[3] R. Feldt, E. Ahmad, B. Raza, E. Hult, and T. Nordebäck,
“Evolving the ECSS standards and their Use: Experience based
on Industrial Case Studies,” in Data Systems in Aerospace 2009
(DASIA’09), 2009.

[4] E. Ahmad and B. Raza, “Challenges with Software Verification
and Validation in the Space Industry Constrained by the ECSS
Standard,” Blekinge Institute of Technology, Tech. Rep. MSE-
2009:02, February 2009.

[5] J. Schulte, “A Software Verification & Validation Management
Framework for the Space Industry,” Master’s thesis, Blekinge
Insitute of Technology, Ronneby, Sweden, September 2009.

[6] P. Preissing, “A Framework for Improving the Software Ver-
ification and Validation Process in the Space Industry,” Mas-
ter’s thesis, Technische Universitt Munich, Germany, September
2009.

[7] S. Slaughter, D. Harter, and M. Krishnan, “Evaluating the cost
of software quality,” 1998.

[8] B. Littlewood, P. Popov, L. Strigini, and N. Shryane, “Modeling
the effects of combining diverse software fault detection tech-
niques,” IEEE Transactions on Software Engineering, vol. 26,
no. 12, pp. 1157–1167, 2000.

[9] B. Kitchenham and S. Linkman, “Validation, verification, and
testing: diversity rules,” IEEE software, vol. 15, no. 4, pp. 46–
49, 1998.

[10] N. Kikuchi and T. Kikuno, “Improving the testing process by
program static analysis,” in Software Engineering Conference,
2001. APSEC 2001. Eighth Asia-Pacific, 2001, pp. 195–201.

[11] M. A. Wojcicki and P. Strooper, “An iterative empirical strategy
for the systematic selection of a combination of verification and
validation technologies,” in WoSQ ’07: Proceedings of the 5th
International Workshop on Software Quality. Washington, DC,
USA: IEEE Computer Society, 2007, p. 9.

[12] L.-O. Damm, L. Lundberg, and C. Wohlin, “Faults-slip-through
- a concept for measuring the efficiency of the test process,”
Software Process: Improvement and Practice, vol. 11, no. 1,
pp. 47–59, 2006.

[13] A. Hevner, “Phase containment metrics for software quality
improvement,” Information and Software Technology, vol. 39,
no. 13, pp. 867–877, 1997.

[14] S. Wagner, “A model and sensitivity analysis of the quality
economics of defect-detection techniques,” in Proceedings of
the 2006 international symposium on Software testing and
analysis. ACM, 2006, p. 84.

[15] J. Bradbury, J. Cordy, and J. Dingel, “An empirical frame-
work for comparing effectiveness of testing and property-based
formal analysis,” ACM SIGSOFT Software Engineering Notes,
vol. 31, no. 1, p. 5, 2006.

[16] V. Basili, G. Caldiera, and H. Rombach, “Experience factory,”
Encyclopedia of software engineering, vol. 1, pp. 469–476,
1994.

[17] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday,
D. S. Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal defect
classification-a concept for in-process measurements,” IEEE
Trans. Softw. Eng., vol. 18, no. 11, pp. 943–956, 1992.


