
Search-based prediction of fault-slip-through in large software projects

Wasif Afzal, Richard Torkar and Robert Feldt
Blekinge Institute of Technology, Ronneby, Sweden

Email: waf|rto|rfd@bth.se

Greger Wikstrand
KnowIT YAHM Sweden AB

Email: greger.wikstrand@yahm.se

Abstract—A large percentage of the cost of rework can be
avoided by finding more faults earlier in a software testing
process. Therefore, determination of which software testing
phases to focus improvements work on, has considerable
industrial interest. This paper evaluates the use of five different
techniques, namely particle swarm optimization based artificial
neural networks (PSO-ANN), artificial immune recognition
systems (AIRS), gene expression programming (GEP), genetic
programming (GP) and multiple regression (MR), for pre-
dicting the number of faults slipping through unit, function,
integration and system testing phases. The objective is to
quantify improvement potential in different testing phases by
striving towards finding the right faults in the right phase. We
have conducted an empirical study of two large projects from a
telecommunication company developing mobile platforms and
wireless semiconductors. The results are compared using simple
residuals, goodness of fit and absolute relative error measures.
They indicate that the four search-based techniques (PSO-
ANN, AIRS, GEP, GP) perform better than multiple regression
for predicting the fault-slip-through for each of the four testing
phases. At the unit and function testing phases, AIRS and
PSO-ANN performed better while GP performed better at
integration and system testing phases. The study concludes
that a variety of search-based techniques are applicable for
predicting the improvement potential in different testing phases
with GP showing more consistent performance across two of
the four test phases.

I. INTRODUCTION

Software quality is most commonly referred to as confor-
mance to both functional and non-functional requirements.
Presence of software faults is usually taken to be an impor-
tant factor in software quality, a factor that shows an absence
of quality. There have been different types of software
quality evaluation models proposed in software engineering
literature, all of them with the objective of accurately quan-
tifying software quality (see [1] for a classification of these
models).

We know that faults are cheaper to find and remove earlier
in the software development process [2]. Software testing is
the major fault-finding activity therefore much research has
focused on making the software testing process as efficient
as possible. One way to improve testing process efficiency is
to avoid unnecessary rework by finding more faults earlier.
The Faults-Slip-Through (FST) concept [3], [4] is one way
of providing quantified decision support to reduce the effort
spent on rework. The Faults-Slip-Through (FST) concept is
used for determining whether or not a fault slipped through

Report Name: Fault Slip Through Analysis Project: FST M570 Start Date: 2009-06-22 End Date: 2009-12-13 Customer Delivery: 2009-12-22

FST Measurement Tool

FST Matrix

Found During:

Expected fault

identification phase: Review Unit Test Function Test Integration Test System Test Acceptance Test

Customer

Identified Total

Output

Slippage%

Review 15 25 86 25 30 2 1 184 47

Unit Test 19 56 15 19 1 0 110 25

Function Test 33 4 4 0 0 41 2

Integration Test 8 11 0 0 19 3

System Test 4 0 1 5 0

Acceptence Test 1 0 1 0

Total 15 44 175 52 68 4 2 360

Input Slippage % 0 57 81 85 94 75 100 0

Review Unit Test Function Test Integration Test System Test Acceptance Test Customer

Identified

Total

Incorrect data 76 1 8 25 1 0 0 0 111 24%

Review

Unit Test

Function Test

Integration Test

System Test

Acceptance Test

Customer Identified

System Design Review, Module Design Review, Code Review

HW Development, System Simulation, Module Test

Function Test, Interoperability development test

Integration of modules to functions, Integration Test

System Test, IOT, Delivery Test

Type Approval

Customization, Customer Acceptance, Operator Identified, Customer Identified

Figure 1. An example FST matrix.

the phase where it should have been found. The term phase
refers to any phase in a typical software development life
cycle. However the most interesting and industry-supported
applications of FST measurement are during testing. This is
because a defined testing strategy within any organization
implicitly classifies faults whereby certain types of faults
might be targeted by certain strategies. FST is essentially a
fault classification approach and focuses on when it is cost-
effective to find each fault. Depending on the FST numbers
for each testing phase (e.g. unit, function, integration and
system), improvement potentials can be determined by cal-
culating the difference between the cost of faults in relation
to what the fault cost would have been if none of them would
have slipped through the phase where they were supposed to
be found. Thus, FST is a way to provide quantified decision
support to reduce the effort spent on rework. This reduction
in effort is due to finding faults earlier in a cost-effective
way.

One way to visualize FST for different software testing
phases is using an FST matrix (Figure 1). The columns in
Figure 1 represent the phases in which the faults were found
(Found During), whereas the rows represent the phases
where the faults should have been found (Expected fault
identification phase). For example 56 of the faults that were
found in function testing should have been found during unit
testing.

Considering the initial successful results of implementing
FST across different organizations within Ericsson [3], [4], it
is interesting to investigate how to use FST measurement to
provide additional decision support for project management.
Staron and Meding [5] highlight that the prediction of FST
can be a refinement to their proposed approach for predicting
the number of defects in the defect database. Similarly

Damm [3] highlight that FST can potentially be used to
support software fault predictions. This additional decision
support would be introduced in order to make the software
development more predictable, i.e. we can better cope with
the conflicting demands of doing more with less, doing it
faster and doing it with higher quality [6].

Therefore with the goal of providing decision support
based on FST, we set out to investigate the following
research question:

RQ: How can we predict FST for each testing phase multiple
weeks in advance by making use of data about project
progress, testing progress and fault inflow from multiple
projects?

We are particularly interested in evaluating the accuracy
of predictions using search-based techniques [7]. The moti-
vation for applying these techniques is that these are non-
linear, data-driven and self-adaptive approaches, having the
ability to model potentially complex relationships between
input and output data. Traditional statistical methods like the
autoregressive moving average have difficulties in modeling
non-linearities and unknown explicit relationships among
variables. Search-based techniques, on the other hand, are
independent of satisfying any data assumptions and do not
require the definition of the functional form of the relation-
ship upfront. The above properties make these techniques
general and flexible for data-driven modeling tasks. We have
added multiple regression as another technique to better
compare the prediction ability of search-based techniques.

Secondly, we use metrics related to the status of various
work packages, testing progress and fault-inflow at the
project level as our independent variables. We present the
results of evaluating the use of multiple regression (MR)
and four search-based techniques (artificial immune recog-
nition system (AIRS), gene expression programming (GEP),
genetic programming (GP) and particle swarm optimization
based artificial neural network (PSO-ANN)) to predict FST
in each of the four testing phases (unit, function, integration,
system) of a large-scale project carried out by a company
developing mobile platforms and wireless semiconductors.
The predictions are compared for differences in models’
residuals, goodness of fit and absolute relative error values.
The comparative results indicate that while MR is not
able to perform as good as the search-based techniques,
GP performs better for two testing phases (integration and
system) and AIRS, PSO-ANN perform better for unit and
function testing phases respectively.

The remainder of the paper is organized as follows.
Section II summarizes related work. Section III describes
the research context and Section IV discusses the variables,
feature selection and evaluation measures used. The search-
based techniques used in this paper are discussed in Sec-
tion V. Results are presented in Section VI while Section VII
contains the discussion. Validity evaluation and conclusions
make up Sections VIII and IX, respectively.

II. RELATED WORK

There are a number of modeling mechanisms to predict
the quality of software. Due to the definition of software
quality in many different ways, previous studies have fo-
cused on predicting different but related dependent vari-
ables of interest; examples include predicting for defect
density [8], software defect content estimation [9], fault-
proneness [10] and software reliability prediction in terms
of time-to-failure [11]. In addition, several independent
variables have been used to predict the above dependent
variables of interest [1]; examples include prediction using
size and complexity metrics [12] and prediction using testing
metrics [13]. The actual prediction is performed using a
variety of approaches, and can broadly be classified into sta-
tistical regression techniques, machine learning approaches
and mixed algorithms [14]. Increasingly, evolutionary and
bio–inspired approaches are being used for software quality
classification [15], [16].

This study is different from the above software quality
evaluation studies. First, the dependent variable of interest
here is the number of faults slipping through to various
testing phases with the aim of triggering corrective actions
for avoiding unnecessary rework late in software testing.
Second, we make use of several independent variables at
the project level, i.e. variables depicting work status, testing
progress status and fault-inflow. A study by Staron and
Meding [5] makes use of project planning and testing status
variables for predicting weekly fault inflow. The current
study, although taking inspiration from this study, is different
in terms of purpose, use of independent and dependent
variables and prediction techniques employed.

III. RESEARCH CONTEXT

The data used in this study comes from two large projects
at a telecommunication company that develops mobile plat-
forms and wireless semiconductors. The projects are aimed
at developing platforms introducing new radio access tech-
nologies written using C. The average number of persons
involved in these projects is approximately 250. The data
from one of the projects is used as a baseline to train the
models while the data from the second project is used to
evaluate the models’ results. We have data from 45 weeks
of the baseline project to train the models while we evaluate
the results on data from 15 weeks of an on-going project.

The management of these projects is based on the con-
cepts of tollgates, milestones, steering points and check-
points to manage and control project deliverables. Tollgates
represent long-term business decisions while milestones are
predefined events at the operating work level. The moni-
toring of these milestones is an important element of the
project management model. Steering points are defined to
coordinate multiple parallel platform projects, e.g. handling
priorities between different platform projects. The check-
points are defined in the development process to define

the work status in a process. At the operative work level,
software development is structured around work packages
(WPs). These work packages are defined during the project
planning phase. The work packages are defined to implement
change requests or a subset of a use-case, thus the definition
of work packages is driven by the functionality to be
developed. An essential feature of work packages is that
these allow for simultaneous work on different modules
of the project at the same time by multiple teams. Since
different modules might get affected by developing a single
work package, it is difficult to obtain consistent metrics at
the module level.

The structure of a project into work packages present an
obvious choice for the prediction models since the metrics at
work package level have stable values and hold a more direct
and intuitive meaning for the company employees. At our
subject company the work status of various work packages is
grouped using a graphical integration plan (GIP) document.
The GIP maps the work packages’ status over multiple
time-lines that might indicate different phases of software
testing or overall project progress. There are different status
rankings of the work packages such as number of work
packages planned to be delivered for system integration
testing.

IV. RESEARCH METHOD

Our research method is to apply five different techniques
to the task of predicting FST in four testing phases based
on input data collected from a telecommunication company
developing mobile platforms and wireless semiconductors.
The input data is made up of different variables divided into
4 sets (Table I), i.e., fault in-flow, status rankings of work
packages, faults-slip-through and test case progress.

During the project life cycle there are certain status rank-
ings related to the work packages (shown under the category
of ‘status rankings of WPs’ in Table I) that influence fault-
inflow, i.e. the number of faults found in the consecutive
project weeks. . The information on these status rankings is
also conveniently extracted from the GIP which is a general
planning document at the company. Another important set
of variables for our prediction models is the actual test
case (TC) progress data, shown under the category of ‘TC
progress’ in Table I, which have a more direct influence on
the fault in-flow. The information on number of test cases
planned and executed at different testing phases is readily
available from an automated report generation tool that uses
data from an internally developed system for fault logging.
These variables along with the status rankings of the work
packages influences the fault-inflow; so we monitor the fault-
inflow as another variable for our prediction models. Another
set of variables representing the output is the number of
faults that slipped-through to the unit, function, integration
and system testing phases, indicated under the category
‘FST’ in Table I. We also recorded the accumulated number

Table I
VARIABLES OF INTEREST FOR THE PREDICTION MODELS.

No. Description Abbreviation Category
1 Fault in-flow F. in-flow Fault-inflow
2 No. of work packages planned for system integration No. WP. PL. SI Status rank-

ings of WPs
3 No. of work packages delivered to system integration No. WP. DEL. SI
4 No. of work packages tested by system integration No. WP Tested. SI
5 No. of faults slipping through to all of the testing

phases
No. FST FST

6 No. of faults slipping through to the unit testing FST-Unit
7 No. of faults slipping through to the function testing FST-Func
8 No. of faults slipping through to the integration testing FST-Integ
9 No. of faults slipping through to the system testing FST-Sys
10 No. of system test cases planned No. System. TCs. PL TC progress
11 No. of system test cases executed No. System. TCs.

Exec.
12 No. of interoperability test cases planned No. IOT TCs. PL
13 No. of interoperability test cases executed No. IOT TCs. Exec.
14 No. of network signaling test cases planned No. NS TCs. PL
15 No. of network signaling test cases executed No. NS TCs. Exec.

of faults slipping through to all the testing phases. All of the
above measurements were collected at the subject company
on a weekly basis.

We analyzed the dependencies among variables using
scatter plots to identify correlated variables, i.e. variables
that potentially measure the same attribute and thus using
only one of them would be enough. We were especially in-
terested in visualizing the relationship between the measures
of status rankings of work packages, test case progress, fault
in-flow and rest of the measures related to status rankings
of work packages and test case progress. The pair-wise
scatter plots of the above attributes showed a tendency of
non-linear relationships. Hence, we calculated the Spearman
rank-order correlation coefficient to find if there were any
strong indications of correlation among the variables. The
Spearman rank-order correlation coefficient values varied
between 0.2 and 0.6, indicating that the pairs of variables
were not strongly correlated.

We then used the statistical analysis technique of kernel
principal component analysis (KPCA) [17] to reduce the
number of independent variables to a smaller set that would
still capture the original information in terms of explained
variance in the data set. The role of original variables
in determining the new factors (principal components) is
determined by loading factors. Variables with high loadings
contribute more in explaining the variance. The results of
applying the Gaussian kernel, KPCA (Table II) showed that
the first four components explained 97% of the variability
in the data set. We did not include the faults-slip-through
measures in the KPCA since these are the attributes we are
interested in predicting. In each of the four components,
all the variables contributed with different loadings, with
the exception of two, namely number of network signaling
test cases planned and number of network signaling test
cases executed. Hence, we excluded these two variables and
used the rest for predicting the fault-slip-through in different
testing phases.

The predictive accuracy of different techniques is com-
pared using absolute residuals (i.e. |actual-predicted|) [18],

Table II
THE LOADINGS AND EXPLAINED VARIANCE FROM FOUR PRINCIPAL COMPONENTS.

Variance
ex-
plained

Variable loadings. The variable names use abbreviations given in Table I

F.
inflow

No. WP.
PL. SI

No. WP.
DEL. SI

No. WP
Tested.
SI

No.
FST

No.
System.
TCs. PL

No.
System.
TCs. Exec.

No. IOT
TCs. PL

No. IOT
TCs.
Exec.

No. NS
TCs. PL

No. NS
TCs.
Exec.

Component 1 51.61% 0.60 0.02 0.01 0.09 0.38 0.61 0.34 0.02 0.02 0 0
Component 2 31.07% 0.75 -0.02 0.01 0.13 -0.01 -0.57 -0.32 0.03 0.03 0 0
Component 3 9.88% -0.29 0.01 0 0.52 0.75 -0.20 -0.11 0.11 0.12 0 0
Component 4 4.64% 0 0 0.02 0.83 -0.50 0.19 0 -0.07 -0.07 0 0

[19] and absolute relative error metric [20]. The goodness of
fit of the results from different techniques is assessed using
the Kolmogorov-Smirnov (K-S) test. For the K-S test we
use α = 0.05 and if the K-S statistic J is greater or equal
than the critical value Jα, we infer that the two samples did
not have the same probability distribution and hence do not
represent significant goodness of fit.

V. TECHNIQUES USED

This section discusses the five techniques used in this
study for FST prediction.

A. Particle swarm optimization based artificial neural net-
work (PSO-ANN)

The development of artificial neural networks is inspired
by the interconnections of biological neurons [21]. Selecting
proper ANN architecture parameters is one of the important
decisions for designing the ANN model. Different training
schemes for ANN have been proposed, the most used
being the back-propagation algorithms [22]. However, back-
propagation suffers from certain drawbacks [23] e.g. slow
convergence, local minima and lack of robustness. Recently,
evolutionary optimization methods have been used for neural
network training since the search space of a multilayer feed
forward neural network with a non-linear activation function
is complex and believed to have many local and global
minima [24].

Kennedy and Eberhart introduced PSO in 1995 [25]
inspired by the coordinated search for food by a swarm
of birds, that can be used for parameter estimation of an
ANN. The idea behind PSO is that a swarm of particles
move through a multidimensional search space for finding
a global optimum (e.g. minimum or maximum of a given
objective function). Several improvements of the basic PSO
algorithm have been proposed, one of them by Trelea [26].
According to [26], the expression for position and velocity
update for particle i of the dimension d is given by:

vid(t) = a ∗ vid(t − 1) + b ∗ (pid − xid(t − 1)) +
+ b ∗ (pgd − xid(t − 1))

xid(t) = c ∗ xid(t − 1) + d ∗ vid(t)

where vid(t) = velocity of the ith particle of the dth

dimension, pid = best position for ith particle of the dth

dimension, xid(t) = position of the ith particle of the dth

dimension, pgd = global best position of the dth dimen-
sion. The parameter a represents the inertia weight that
determines the influence of old velocity. The parameter b is
the acceleration coefficient that determines the influence of
local best position and the global best position. Trelea [26]
recommends two sets of parameter values for a and b
after simulation experiments, i.e. (a = 0.6, b = 1.7) and
(a = 0.73, b = 1.49). These two are commonly referred
to as TreleaI and TreleaII. The parameters c and d affect a
particle’s new position and are commonly set to 1.

A three layer feed forward neural network model has been
used in this study. The number of layers and the number of
nodes at each layer is determined through experimentation.
The final ANN structure consisted of one input layer, two
hidden layers and one output layer. The two hidden layers
consisted of 3 and 5 nodes while the output layer consisted
of 1 node. The number of independent variables in the
problem determined the number of input nodes. The hyper-
bolic tangent sigmoid and linear transfer functions have been
used for the hidden and output nodes respectively. The PSO
variation Trealea II, implemented as part of the MATLAB
PSO toolbox [27], has been used in this study with the
number of particles in the swarm set to 25 and number of
iterations set to 2000. The mean squared error has been used
as the fitness function.

B. Artificial immune recognition system (AIRS)

The concepts of artificial immune systems have been used
to produce a supervised learning system called artificial
immune recognition system (AIRS) [28].

Based on immune network theory, [29] developed a
resource limited artificial immune system and introduced the
metaphor of an artificial recognition ball (ARB), a collection
of similar B-cells. B-cells are anti-body secreting cells that
is a response of the immune system against the attack
of a disease. For the resource-limited AIS, a predefined
number of resources exists. The ARBs compete based on
their stimulation level. Least stimulated cells are removed
while an ARB having higher stimulation value could claim
more resources. The AIRS is based on the similar idea
of a resource-limited system but many of the network
principles were abandoned in favor of a simple population-
based model [28].

Table III
GEP CONTROL PARAMETERS.

Control Parameter Value
Population size 50
Genes per chromosome 4
Gene head length 8
Termination condition 2000 generations
Functions {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Random
Mutation rate, Inversion rate, IS transpo-
sition rate, Root transposition rate, Gene
transposition rate, One-point recombination
rate, Two-point recombination rate, Gene
recombination rate

0.04, 0.1, 0.1, 0.1, 0.1,
0.3, 0.3, 0.1

Selection method roulette-wheel

The AIRS algorithm consists of five steps [28]: 1) Initial-
ization, 2) Memory cell identification and ARB generation,
3) Competition for resources and development of a candidate
memory cell, 4) Memory cell introduction and 5) Classifica-
tion. The details of each of these steps can be found in [28]
and are omitted due to space constraints.

The WEKA plug-in for AIRS [30] has been used with the
following parameters: Affinity threshold = 0.2, clonal rate =
10, hypermutation rate = 2, knn = 3, mutation rate = 0.1,
stimulation value = 0.9 and total resources = 150.

C. Gene expression programming (GEP)

Gene expression programming (GEP) is an evolutionary
algorithm introduced by Ferreira [31]. The individuals mak-
ing up a population in GEP are encoded as linear strings
of fixed length that are later expressed as nonlinear expres-
sion trees of different sizes and shapes. Thus GEP brings
a separation between genotype (the linear chromosomes)
and the phenotype (the expression trees). GEP uses karva
notation [31] to encode solutions where each gene has a head
composed of functions and terminals, and a tail composed
only of terminals [31]. The GEP algorithm begins with
a random generation of chromosomes to form an initial
population. The chromosomes are expressed as trees and
evaluated for fitness (Mean squared error,

∑N
i=1(Pi − Ti)2

where Pi and Ti are ith predicted and target values).
If the termination criterion is not already reached, the
selection process selects best-fit individuals for making a
new population for the next generation. Genetic diversity
is inculcated in the new population using genetic operators
of replication, mutation, inversion, insertion sequence (IS)
transposition, root transposition, gene transposition, gene
recombination, one-and-two point recombination [31], [32].
The process is iterated for a certain number of generations
until the termination criterion is reached. The details of
genetic operators are omitted due to space constraints and
can be found in [31].

The parameter settings for GEP used in this study are
shown in Table III.

Table IV
GP CONTROL PARAMETERS.

Control parameter Value
Population size 50
Termination condition 2000 generations
Function set {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Ramped half-and-half method
Probabilities of crossover, mu-
tation, reproduction

0.8, 0.1, 0.1

Selection method roulette-wheel

D. Genetic programming (GP)

GP, an evolutionary computation technique, is an exten-
sion of genetic algorithms [33]. The population structures
(individuals) in GP are not fixed length character strings but
programs that, when executed, are the candidate solutions
to the problem. For the symbolic regression application
of GP, programs are expressed as syntax trees, with the
nodes indicating the instructions to execute and are called
functions (e.g. min, ∗, +, /), while the tree leaves are
called terminals which may consist of independent variables
of the problem and random constants (e.g. x, y, 3). The
worth of an individual GP program in solving the problem
is assessed using a fitness evaluation. The control parameters
limit and control how the search is performed like setting the
population size and probabilities of performing the genetic
operations. The termination criterion specifies the ending
condition for the GP run and typically includes a maximum
number of generations [7]. GP iteratively transforms a
population of computer programs into a new generation of
programs using various genetic operators. Typical operators
include crossover, mutation and reproduction. The details of
genetic operators are omitted due to space constraints but can
be found in [34]. The GP programs were evaluated according
to the sum of absolute differences between the obtained and
expected results in all fitness cases,

∑n
i=1 | ei − e

′

i |, where
ei is the actual fault count data, e

′

i is the estimated value of
the fault count data and n is the size of the data set used
to train the GP models. The control parameters that were
chosen for the GP system are shown in Table IV.

E. Multiple regression (MR)

Multiple regression is an extension of simple least-square
regression for more than one independent (predictor) vari-
ables to estimate the values of the dependent (criterion)
variable. The general form of the equation is:

y′ = a + b1x1 + b2x2 + . . . + bkxk

where y′ is the predicted value of the dependent variable,
x1,x2, . . . , xk are independent (predictor) variables and a,
b are the coefficients that must be determined from sample
data. As in simple regression, least square solution is used
to determine the best regression equation.

Table VI
ABSOLUTE RELATIVE ERROR, ARE, VALUES FOR DIFFERENT

TECHNIQUES AT UNIT, FUNCTION, INTEGRATION AND SYSTEM TEST
PHASES.

PSO-ANN AIRS GEP GP MR
Unit testing 2.66 0.81 0.95 1.16 5.34
Function testing 2.01 4.51 2.95 3.15 4.36
Integration testing 0.99 0.56 1.61 0.36 1.73
System testing 0.43 0.7 0.59 0.04 0.06

VI. RESULTS AND ANALYSIS

The box plots of the residuals for faults-slip-through at
the unit testing phase (from the five techniques: PSO-ANN,
AIRS, GEP, GP and MR), are shown in Figure 2(a).

It can be observed that the box plots for PSO-ANN,
GEP and GP are narrower than those of AIRS and MR,
indicating that the AIRS and MR residuals are more spread
out as compared to the other techniques. The box plots
for PSO-ANN and GEP are smaller in comparison with
that of GP. Since the residual box plots were skewed, we
resorted to the non-parametric Kruskal-Wallis test to exam-
ine any statistical differences between the residuals and to
confirm the trend observed from the box plots (Figure 2(a)).
The result of the Kruskal-Wallis test (p = 0.0000000025)
suggested that it is possible to reject the null hypothesis
of all samples being drawn from the same population at
significance level, α = 0.05. This is to suggest that at least
one sample median is significantly different from the others.
We used Wilcoxon rank sum test to investigate which of
the techniques’ residuals differ significantly. The null hy-
pothesis of samples being drawn from identical distributions
was rejected at α = 0.05 for MR:PSO-ANN, MR:GEP,
MR:GP, MR:AIRS. The corresponding p-values for these
pairs appear in Table VII. The p-values of rest of the pair-
wise comparisons (PSO-ANN:AIRS, PSO-ANN:GEP, PSO-
ANN:GP, AIRS:GEP, AIRS:GP, GEP:GP) suggested that
there were no significant differences between the model
residuals. This suggests that while the group of search-based
techniques do not differ significantly pair-wise for residuals,
MR residuals are significantly different. We also measured
the goodness of fit for predictions from each technique
relative to the actual FST at the unit testing phase. Table V
shows the K-S statistic J for each of the five techniques. The
AIRS technique showed statistically significant goodness of
fit which has to do with an exact match of actual FST data
on 9 out of 15 instances (Figure 2(b)). Table VI shows the
ARE measure for each of the five techniques at the unit test
phase. AIRS gives the least ARE value, followed by GEP
and GP.

The box plots of the residuals from the five techniques for
FST at the function testing phase are shown in Figure 2(c).
We can observe that there is a greater spread of box plots
for each of the techniques as compared with those at the unit
testing phase. The plots for each of the techniques are also

farther away from the 0 mark on the y-axis, with PSO-ANN
being the closest of all but having a much larger spread as
compared with other box plots. To test for any significant
differences between the residuals, the results of applying
Kruskal-Wallis test (p = 0.00022) suggested that the null
hypothesis of all the samples being drawn from the same
population can be rejected at α = 0.05. This is to suggest
that at least one sample median is significantly different from
the others. To further investigate which of the techniques’
residuals differ, we used the Wilcoxon rank sum test for
pair-wise comparisons. Table VII shows the significant p-
values for pair-wise comparisons where the null hypothesis
of samples being drawn from identical distributions was
rejected. Except for the pairs GEP:GP and MR:AIRS, all
pair-wise model residuals differ significantly. This confirms
that there is much variability in the residuals at the function
testing phase for every pair of the techniques except for
GEP:GP and MR:AIRS. The pairs GEP:GP and MR:AIRS
do not differ significantly but as is evident from their box
plots (Figure 2(c)) they both are not in close proximity of
mark 0 on the y-axis. The goodness of fit of predictions from
each of the techniques in relation to the actual FST during
function testing is measured using the K-S test. The results
appear in Table V. PSO-ANN has statistically significant
goodness of fit which is also evident from Figure 2(d) where
the PSO-ANN curve is closer to the actual FST curve at
the function testing phase. The box plot of PSO-ANN in
Figure 2(c) also suggests that the median is much nearer to
the 0 mark than other techniques. PSO-ANN is also able to
give best ARE values in comparison with other techniques
(Table VI).

The residual box plots from the five techniques for FST at
the integration testing phase are shown in Figure 2(e). The
box plots in this case are narrow for all the techniques with
GP having a median closest to the 0 mark on the y-axis
while MR box plot appears farthest away. This indicates
that while there does not seem to be much difference
in absolute residuals of the four search-based techniques,
the residuals of MR appear to be differently placed. In
order to confirm this, the Kruskal-Wallis test was performed
and the result (p = 0.000077) showed that at least one
sample median is significantly different from others. As
with previous two test phases the Wilcoxon rank sum test
for pair-wise comparisons was performed. The p-values in
Table VII confirmed that for all pairs involving MR (i.e.
MR:PSO-ANN, MR:AIRS, MR:GEP, MR:GP) we can reject
the null hypothesis of samples being drawn from identical
distributions. For all the pair-wise comparisons of residuals
of four search-based techniques, there were no significant
differences between samples. The results of Kolmogorov-
Smirnov test for measuring the goodness of fit of predictions
in relation to the actual FST at the integration testing phase
are given in Table V. Table V shows that AIRS and GP
have statistically significant goodness of fit, with their K-S

(a) Box plots of the residuals for each technique at the
unit testing phase.

(b) Plot of predicted vs. the actual FST values at the unit
testing phase for techniques having significant goodness
of fit.

(c) Box plots of the residuals for each technique at the
function testing phase.

(d) Plot of predicted vs. the actual FST values at the
function testing phase for techniques having significant
goodness of fit.

(e) Box plots of the residuals for each technique at the
integration testing phase.

(f) Plot of predicted vs. the actual FST values at the
integration testing phase for techniques having significant
goodness of fit.

(g) Box plots of the residuals for each technique at the
system testing phase.

(h) Plot of predicted vs. the actual FST values at the
system testing phase for techniques having significant
goodness of fit.

Figure 2. Box plots of the residuals and the plot of predictions for unit, function, integration and system testing phase.

Table V
TWO-SAMPLE TWO SIDED K-S TEST RESULTS FOR PREDICTIONS AT DIFFERENT TESTING PHASES WITH CRITICAL VALUE Jα = 0.54.

K-S test statistic, J
Unit testing Function testing Integration testing System testing

PSO-ANN AIRS GEP GP MR PSO-ANN AIRS GEP GP MR PSO-ANN AIRS GEP GP MR PSO-ANN AIRS GEP GP MR
0.8 0.27 0.8 0.6 1 0.40 0.90 0.90 0.90 1 0.60 0.27 0.60 0.33 0.73 0.40 0.73 0.27 0.20 0.67

Table VII
P-VALUES AFTER APPLYING THE WILCOXON RANK SUM TEST ON RESIDUALS AT UNIT, FUNCTION, INTEGRATION AND SYSTEM TESTING PHASES

WITH α = 0.05.

Unit testing Function testing Integration testing System testing

M
R

:P
SO

-A
N

N

M
R

:A
IR

S

M
R

:G
E

P

M
R

:G
P

PS
O

-A
N

N
:A

IR
S

PS
O

-A
N

N
:G

E
P

PS
O

-A
N

N
:G

P

A
IR

S:
G

E
P

A
IR

S:
G

P

M
R

:P
SO

-A
N

N

M
R

:G
E

P

M
R

:G
P

M
R

:P
SO

-A
N

N

M
R

:A
IR

S

M
R

:G
E

P

M
R

:G
P

PS
O

-A
N

N
:A

IR
S

PS
O

-A
N

N
:G

P

A
IR

S:
G

P

G
E

P:
G

P

M
R

:P
SO

-A
N

N

M
R

:G
E

P

M
R

:G
P

0.00004 0.000003 0.000003 0.000002 0.00 0.04 0.04 0.03 0.03 0.0014 0.008 0.006 0.0004 0.00009 0.0008 0.00006 0.04 0.00 0.00 0.00 0.0002 0.02 0.000003

test statistic being less than the critical value of Jα = 0.54
(Figure 2(d)). As for ARE, GP has the lowest ARE value in
comparison with other techniques (Table VI).

The residual box plots from the five techniques for
predicting FST at the system testing phase are shown in
Figure 2(g). As with the box plots for the FST at the
function testing phase (Figure 2(c)), there is a greater
variance for different techniques at the system testing phase
(Figure 2(g)). The sizes of the box plots vary, with AIRS
having a larger box plot in comparison with the others. The
box plot for GP is smallest with the median closer to 0. To
test for any significant differences between the residuals, the
results of applying the Kruskal-Wallis test (p = 0.0000001)
suggested that the null hypothesis of all the samples being
drawn from the same population can be rejected at α = 0.05.
We subsequently used the Wilcoxon rank sum test as a post-
hoc test to determine which particular comparisons differ
significantly. The p-values obtained are shown in Table VII.
The results indicate that there are significant differences
in residuals between the pairwise combinations of PSO-
ANN:GP, AIRS:GP, GEP:GP, PSO-ANN:AIRS, MR:PSO-
ANN, MR:GEP, MR:GP (having a p-value of less than
0.05). A common trend from this result show that the
predictions made by GP are significantly different from the
others, a trend that is also confirmed from the box plots in
Figure 2(g). The goodness of fit of predictions from each of
the techniques with actual FST data during system testing
phase is measured using the K-S test. The results appear
in Table V. The results in Table V show that PSO-ANN,
GEP and GP have statistically significant goodness of fit
(Figure 2(h)). As is evident from the box plots in Figure 2(g),
AIRS has a wider box plot and consequently has a non-
significant goodness of fit in relation to the actual FST at the
system testing phase. ARE values from different techniques
(Table VI) indicate that GP gives the lowest ARE values.

In summary, a general trend from the results show that
the search-based techniques (PSO-ANN, AIRS, GEP, GP)
perform better than multiple regression for predicting FST

at unit, function, integration and system testing phases.
The results show that MR model residuals are different
and inferior for majority of the pair-wise comparisons with
search-based techniques’ residuals for all the testing phases.
The goodness of fit of MR is not significant and ARE values
not the lowest for any of the testing phases in comparison
with search-based techniques. At the unit testing phase the
model residuals for four search-based techniques do not
differ significantly but AIRS performance is better in terms
of having both statistically significant goodness of fit and
lowest ARE value. At the function testing phase the box
plots of model residuals for the search-based techniques
show a certain degree of variability but PSO-ANN box plot
is promising with its median nearer to the 0 mark on y-
axis. PSO-ANN is also better in having both statistically
significant goodness of fit and lowest ARE value. At the
integration testing phase, the performance of GP is better
with having the median residuals closer to the 0 mark on y-
axis, statistically significant goodness of fit and lowest ARE
value; while at the system testing phase GP is again better in
terms of having significantly different and better residuals,
goodness of fit and lowest ARE.

So while MR is not able to perform as good as the search-
based techniques, GP performs better for two testing phases
(integration and system) and AIRS, PSO-ANN perform
better for unit and function testing phases respectively.

VII. DISCUSSION

One of the basic objectives of doing measurements is
monitoring of activities so that action can be taken as early as
possible to control the final outcome. With this objective in
focus, FST metric work towards the goal of minimization of
avoidable rework by finding faults where they are most cost-
effective to find. Early prediction of FST at different testing
phases is an important decision support to the development
team whereby advance notification of improvement potential
can be made.

An overall interesting outcome of the study is that a

variety of search-based techniques perform better than mul-
tiple regression for FST prediction, especially GP performs
better for two of the four testing phases. The search-based
techniques are also likely to be robust to changes in the
process since they are assumption-free and do not require
prior definition of the functional structure to evolve.

While the focus of this paper has been on a quantitative
evaluation of techniques, one has to be mindful that there
are additional qualitative characteristics of the empirical
models that are important for real-world use, e.g. lower
cost of ownership and robustness to withstand minor process
changes. While these qualitative issues are not the focus in
this study, they are still worth investigating e.g. by asking
industrial professionals to fill structured questionnaires to
assess the usefulness and usability aspects. Additionally
building automated tool support for different search-based
techniques would ease parameter tuning and would allow
the practitioners to evaluate the results of applying multiple
techniques more easily. Moreover selection of predictor
variables that are easy to gather (e.g. the project level
metrics at the subject company in this study) and that do not
conflict with the development life cycle have better chances
of industry acceptance. There is evidence to support that
general process level metrics are more accurate than code/
structural metrics [35], however this subject requires further
research.

Another interesting outcome of this study is the perfor-
mance of search-based techniques outside their respective
training ranges, i.e., the predictions are evaluated for 15
weeks of an on-going project after being trained on another
baseline project data. This is to say that the over-fitting is
within acceptable limits that can be judged from the ARE
values in Table VI where the values for GP are between 0.04
and 3.15 and for PSO-ANN between 0.43 and 2.66; they
are acceptable not being only smaller but also considering
the fact that we are dealing with large scale projects where
the degree of variability in fault occurrences can be large.
This issue is also related to the amount of data available
for training the different techniques which in case of large
projects is typically available enough for the prediction
techniques. We used the historical data from the past 45
weeks to train the models.

In short the implication of the results in this study is
that they have the potential to provide early indications of
quantified improvement potential within the software testing
life cycle.

VIII. VALIDITY EVALUATION

Conclusion validity refers to a statistically significant
relationship between the treatment and the outcome. We
have used non-parametric statistics in this study due to the
violation of the normality assumptions required for paramet-
ric statistical tests. Since the power of parametric statistical
tests are generally higher than non-parametric ones, there

is a chance that the use of non-parametric statistics might
have missed potential differences in outcomes. However this
threat is minimized to an extent by additionally looking
at the box-plots where general trends are visible. Internal
validity refers to a causal relationship between treatment and
outcome. A possible threat to internal validity is that we
cannot publicize our industrial data sets due to proprietary
concerns. However, the transformed representation of the
data can be made available if requested. Secondly each
of the search-based techniques are executed 10 times to
minimize the effect of randomness inherent in these tech-
niques. Construct validity is concerned with the relationship
between theory and application. Our choice of selecting
project level metrics (Table I) instead of structural code
metrics was influenced by multiple factors. First, metrics
relevant to work packages (Section IV) have an intuitive
appeal for the employees at the subject company where they
can relate FST to the proportion of effort invested. Secondly,
the existence of a module in multiple work packages made it
difficult to obtain consistent metrics at the component level.
Thirdly, the intent of this study is to use project level metrics
that are readily available and hence reduces the cost of
doing such predictions. External validity is concerned with
generalization of results outside the scope of the study. This
study is designed for projects structured according to work
packages (Section III), therefore a different set of variables
are required for projects structured differently. However the
use of project level metrics as predictors of fault-slippages
require more empirical studies to increase generalizability,
e.g., by using more projects from different domains.

IX. CONCLUSIONS

This paper has evaluated the application of five techniques
for predicting the fault-slippage in various testing phases
using two projects from the telecommunication industry.
One of the projects is used as a baseline project to train
the techniques while the other on-going project is used to
evaluate the prediction performance of each of the tech-
niques. Various project level metrics are used for building the
techniques. The results from the empirical study show that
the search-based techniques (PSO-ANN, AIRS, GEP, GP)
perform better than multiple regression for predicting FST at
different testing phases based on model residuals, goodness
of fit and absolute relative error values. At the unit testing
phase, though there are no significant differences between
the model residuals of the search-based techniques, AIRS
show statistically significant goodness of fit and lowest ARE
value. PSO-ANN perform better at function testing phase –
having residuals more closer to 0, statistically significant
goodness of fit and lowest ARE value. At integration and
system testing phases, GP perform better with respect to
the three measures of model residuals, goodness of fit and
absolute relative error values. We conclude that a variety of
search-based techniques are applicable for predicting fault-

slippage between different testing phases, especially the use
of GP as a prediction technique is promising as it shows
better prediction performance for two of the four testing
phases.

REFERENCES

[1] N. E. Fenton and M. Neil, “A critique of software defect
prediction models,” IEEE Tran. on SW Eng., vol. 25, no. 5,
1999.

[2] B. Boehm and V. R. Basili, “Software defect reduction top
10 list,” Computer, vol. 34, no. 1, 2001.

[3] L.-O. Damm, L. Lundberg, and C. Wohlin, “Faults-slip-
through–A concept for measuring the efficiency of the test
process,” SW Process: Improv. & Prac., vol. 11, no. 1, 2006.

[4] L.-O. Damm, “Early and cost-effective software fault de-
tection – measurement and implementation in an industrial
setting,” Ph.D. dissertation, Blekinge Inst. of Tech., 2007.

[5] M. Staron and W. Meding, “Predicting weekly defect inflow
in large software projects based on project planning and test
status,” IST, vol. 50, no. 7–8, 2008.

[6] S. Rakitin, Software verification and validation for practition-
ers and managers, 2nd ed. Artech House., Inc., 2001.

[7] E. K. Burke and G. Kendall, Eds., Search methodologies –
Introductory tutorials in optimization and decision support
techniques. Springer Science and Business Media, Inc., 2005.

[8] N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density,” in ICSE’05, 2005.

[9] L. Briand, K. Emam, B. Freimut, and O. Laitenberger, “A
comprehensive evaluation of capture-recapture models for
estimating software defect content,” IEEE Tran. on SW Eng.,
vol. 26, no. 6, 2000.

[10] J. Munson and T. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Tran. on SW Eng., vol. 18, no. 5, 1992.

[11] M. R. Lyu, Handbook of software reliability engineering.
IEEE Computer Society Press and McGraw-Hill, 1996.

[12] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation
of object-oriented metrics on open source software for fault
prediction,” IEEE Tran. on SW Eng., vol. 31, no. 10, 2005.

[13] A. Veevers and A. C. Marshall, “A relationship between
software coverage metrics and reliability,” Software Testing,
Verification and Reliability, vol. 4, no. 1, 1994.

[14] V. Challagulla, F. Bastani, I. Yen, and R. Paul, “Empirical
assessment of machine learning based software defect pre-
diction techniques,” in Proc. of the 10th IEEE Workshop on
OO Real-Time Dependable Systems, 2005.

[15] W. Afzal and R. Torkar, “A comparative evaluation of using
genetic programming for predicting fault count data,” in Proc.
of the 3rd int. conf. on SW eng. advances. IEEE, 2008.

[16] C. Catal and B. Diri, “Software fault prediction with object-
oriented metrics based AIRS,” in PROFES’07. LNCS, 2007.

[17] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy,
“SVM and kernel methods toolbox,” Perception Systémes et
Information, INSA de Rouen, Rouen, France, 2005.

[18] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd,
“What accuracy statistics really measure?” IEE Proceedings
Software, vol. 148, no. 3, 2001.

[19] M. Shepperd, M. Cartwright, and G. Kadoda, “On building
prediction systems for software engineers,” Empirical Soft-
ware Engineering, vol. 5, no. 3, 2000.

[20] T. Khoshgoftaar, N. Seliya, and N. Sundaresh, “An empirical
study of predicting software faults with CBR,” Software
Quality Control, vol. 14, no. 2, 2006.

[21] S. Russell and P. Norvig, Artificial intelligence—A modern
approach. USA: Prentice Hall Series in AI, 2003.

[22] G. Zhang, “Avoiding pitfalls in neural net. research,” IEEE
Tran. on Systems Man and Cybernetics, vol. 37, no. 1, 2007.

[23] B. Curry and P. Morgan, “Neural networks: A need for
caution,” Omega, vol. 25, no. 1, 1997.

[24] G. K. Jha, P. Thulasiraman, and R. K. Thulasiram, “PSO
based neural network for time series forecasting,” in Interna-
tional Joint Conference on Neural Networks, 2009.

[25] J. Kennedy and R. Eberhart, “PSO,” in Proc. of the IEEE Int.
Conf. on Neural Networks, 1995.

[26] I. C. Trelea, “The PSO algorithm: convergence analysis and
parameter selection,” IP Letters, vol. 85, no. 6, 2003.

[27] B. Birge, “PSO–MATLAB toolbox,” 2005,
http://www.mathworks.com/matlabcentral/fileexchange/7506-
particle-swarm-optimization-toolbox.

[28] A. Watkins, J. Timmis, and L. Boggess, “Artificial immune
recognition system (AIRS): An immune-inspired supervised
learning algorithm,” GPEM, vol. 5, no. 3, 2004.

[29] J. Timmis, M. Neal, and J. Hunt, “An artificial immune system
for data analysis,” Biosystems, vol. 55, no. 1-3, 2000.

[30] J. Brownlee, “WEKA plug-in for AIRS.”
http://wekaclassalgos.sourceforge.net/, 2010.

[31] C. Ferreira, “GEP: A new adaptive algorithm for solving
problems,” Complex Systems, vol. 13, no. 2, 2001.

[32] P. H. Sherrod, DTREG, Predictive modeling and forecasting,
2010, http://www.dtreg.com/DownloadManual.htm.

[33] J. Koza, GP: On the programming of computers by means of
natural selection. Cambridge, MA, USA: MIT Press, 1992.

[34] S. Silva, “GPLAB—A genetic programming toolbox for
MATLAB,” http://gplab.sourceforge.net.

[35] E. Arisholm, L. Briand, and E. Johannessen, “A systematic
and comprehensive investigation of methods to build and
evaluate fault prediction models,” JSS, vol. 83, no. 1, 2010.

