
Practitioner-Oriented Visualization in an
Interactive Search-Based Software Test

Creation Tool
Bogdan Marculescu∗, Robert Feldt∗†, Richard Torkar∗†

∗Blekinge Institute of Technology
School of Computing
Karlskrona, Sweden

†Chalmers and University of Gothenburg
Dept. of Computer Science and Engineering

Gothenburg, Sweden

Abstract—Search-based software testing uses meta-
heuristic search techniques to automate or partially auto-
mate testing tasks, such as test case generation or test data
generation. It uses a fitness function to encode the quality
characteristics that are relevant, for a given problem, and
guides the search to acceptable solutions in a potentially
vast search space.

From an industrial perspective, this opens up the possi-
bility of generating and evaluating lots of test cases without
raising costs to unacceptable levels. First, however, the
applicability of search-based software engineering in an
industrial setting must be evaluated.

In practice, it is difficult to develop a priori a fitness
function that covers all practical aspects of a problem.
Interaction with human experts offers access to experience
that is otherwise unavailable and allows the creation of a
more informed and accurate fitness function.

Moreover, our industrial partner has already expressed
a view that the knowledge and experience of domain
specialists are more important to the overall quality of the
systems they develop than software engineering expertise.

In this paper we describe our application of Interactive
Search Based Software Testing (ISBST) in an industrial set-
ting. We used SBST to search for test cases for an industrial
software module and based, in part, on interaction with a
human domain specialist. Our evaluation showed that such
an approach is feasible, though it also identified potential
difficulties relating to the interaction between the domain
specialist and the system.

I. INTRODUCTION

Software is often developed as only one component
among many in complex, engineered systems. In such
a situation, not all system developers can be expected
to have software engineering expertise. Nevertheless,
their domain knowledge is often critical in creating and
selecting test cases. Search-based software testing can

automatically create software test cases and thus poten-
tially tap into a broader experience base by presenting
these test cases to the developers, and allowing them to
interactively select the most meaningful ones [1], [2], [3].
The human experts, henceforth referred to as “domain
specialists” are, therefore, an integral part of software
development, using their knowledge and experience to
make those trade-offs.

The tests thus developed need to be represented in
a way that system developers, domain specialists, and
even users, can understand and that enables an informed
selection to be made. This can be achieved by matching
test representations to the domain, rather than to the
traditional programming and testing languages. Adopting
domain specific representations, thus, allows information
to be presented in ways that are already familiar and
avoids the added burden of adapting to new representa-
tions.

In this paper we investigate the effectiveness of such
representations for interactive, semi-automated testing
of software for embedded control systems developed
by a Swedish systems engineering and manufacturing
company. The company’s input was crucial in developing
a prototype ISBST system, evaluating our assumptions,
and learning from these efforts. Our contribution is one
of the first deployments and evaluations of an Interactive
Search Based Software Testing (ISBST) system in actual,
industrial practice.

In Section II we present existing efforts with respect
to interactive evolutionary search and related approaches,
and discuss how our approach differs from them. Sec-
tion III describes the industrial context that forms the ba-
sis of this work. Our approach is described in Section IV,
together with a brief evaluation and a discussion on the



lessons learned from this effort in Section V. Section VII
concludes the paper.

II. RELATED WORK

A term coined by Harman and Jones in 2001 [4],
search based software engineering (SBSE) is the ap-
plication of metaheuristic search techniques to software
engineering problems, e.g. [5], [6], [7]. Search based
software testing (SBST) is a branch of SBSE that
deals with testing problems and has successfully been
applied to several types of testing problems [1], [2], from
object-oriented containers [8] to dynamic programming
languages [9].

An important concept for search-based systems is that
of fitness function. The fitness function can be seen as
“the characterization of what is considered to be a good
solution” [4]. The fitness function is used to select the
best solutions in a population, and to guide the search
towards good solutions.

Takagi defines Interactive Evolutionary Computation
as “an EC that optimizes systems based on subjective
human evaluation” [10]. This approach relies on human
interaction to evaluate the solutions being developed
by the interactive search system, allowing for situa-
tions where the choice of solution is dependent on
“human preference, intuition, emotion and psychologi-
cal aspects” [10]. The original paper refers to art and
animation, graphics and image processing; in general
applications where the evaluation of a candidate has
a strong subjective component. A prominent example
of this is Picbreeder [11], an online service where
users evolve images, in a collaborative setting, using
interactive evolution. The users’ aesthetic preferences
drive the evolution, not any objective goal.

Nevertheless, we think that this can be generalized
to any type of candidate evaluation where not all the
necessary information, e.g. domain specific knowledge,
experience, background information, or intuition, can be
modeled into the system or encoded in an automatic
evaluation approach [12], [6]. From the perspective of
the system, implicit knowledge can be seen as subjective
evaluation, thus avoiding the need to duplicate existing
expertise.

Tagaki also identifies the problem of human fa-
tigue [10]. This is a problem that arises when a human
user has to perform a large number of interactions with
the system. This is an issue for any interactive system,
since a human suffering from fatigue will not provide the
level of analysis and decision making necessary to per-
form their duties appropriately. Therefore, a key element
in an interactive system will not function properly and

may even hinder the system’s ability to evolve a good
solution.

Search based approaches have already been used as
exploratory tools, in situations where there is an incom-
plete knowledge of the search space. Feldt [6] describes
genetic programming being used to explore potential de-
signs for aircraft arresting system software, and identifies
the importance of obtaining problem-specific knowledge
early in the design process. Parmee et al. [13] introduces
an Interactive Evolutionary Design System to support
the early stages of design. It identifies the importance of
capturing “design knowledge through extensive designer
interaction”.

SBST systems, like EvoSuite [14], require software
engineering expertise to use. Adding interactivity to
such a system in our context would require the domain
specialists to acquire additional skills in software engi-
neering, a process that would be costly in terms of time
and resources.

Our system differs from previous approaches precisely
in the issue of using the current domain specific repre-
sentation as a base for interaction, while trying to shield
the domain specialist from the software engineering
specific details.

III. INDUSTRIAL CONTEXT

Our industrial partner develops hydraulic and elec-
tronic products for off-highway vehicles and machinery.
These products use embedded software for a variety of
applications, from steering and transmission systems to
sensors and displays, where software is an important but
not the main component.

In addition, the company provide their customers with
a software development tool, specifically designed to
allow domain specialists to modify and develop their
own embedded software, to be used with general pur-
pose controllers. While the exact applications may vary
greatly, in all these cases domain expertise outweighs in
important software engineering expertise.

As a result, while software is an important component
in their respective products, they focus their efforts and
resources on other components.

In such a context, the quality of the resulting system
depends on that of the software, but not exclusively so.
Trade-offs may be needed, e.g. restrictions on software
capabilities due to the need to use more robust and less
capable hardware, that cannot be known ahead of time
or may emerge during the design process.

A domain specialist has knowledge of the domain, and
experience with the limitations and demands placed on
the systems they are developing. This knowledge enables

2



them to better assess the quality characteristics of the
complete product.

A practical example is that of a mechanical arm: the
hydraulic valves and electric motors are all controlled by
a micro-controller. The software for this micro-controller
is often developed ad-hoc for each application, so no
generalized test cases can be developed.

In the example here, we are developing tests for a
module of the micro-controller software. The system un-
der test (SUT) is a filter that ensures that a signal, e.g. the
input for a motor from the user or other modules, does
not damage other components. It does so by ensuring
that the signal does not exceed a given upper limit and
attenuating any sudden changes. This filter is a relatively
simple, but typical component: it is common enough to
be included in the basic function library that is provided
with the development tool mentioned above.

To gain a better understanding of the situation, we
conducted discussions with our industrial partner and
attended a training session for our industrial partner’s
and their clients’ engineers.

Their approach is to provide domain specialists with
training in the use of the software development tool,
rather than trying to teach software engineers the domain
concepts they would need. The software development
tool they provide uses concepts that are already fa-
miliar to those working in the field, e.g. it expresses
a component in terms of signals and operations on
signals, rather than programming concepts. The trainees,
in effect, create the types of models that they have been
used to develop, and those models are used by the tool
to generate code.

We have developed an Interactive Search Based Soft-
ware Testing system, tailored to the specific need of the
industrial partner and their development tool, and based
on the type of software applications that they usually
develop. The quality criteria we have used to evaluate
this system and the resulting test cases are based on
our discussions with our industrial partners, their current
practices and their experiences.

The ISBST system itself is a web-based add-on,
separate from the tool offered by our industrial partners.
This means that, while the current SUT and application
are specific to the company, the ISBST system can be
extended to address other software problems. This will
allow any findings to be generalized to a wider set of
problems and situations.

IV. THE ISBST SYSTEM

A. Design of ISBST system
The ISBST system we have developed, described in

more detail in [12], consists of a search-based software

Interaction 
Handler - 
Display 

Component Domain 
Specialist

II. Outer Cycle
Solution 

Candidates

User Feedback - 
Objective Re-Weighting

Solution 
Candidate 

Generator - 
Searcher

Intermediate 
Fitness 

Function

I. Inner Cycle

Fig. 1. Overview of the ISBST

testing system, where the search objectives are selected
by interaction with domain specialists.

The system searches for test cases that break, or are
close to breaking, the limitations that are set as objec-
tives: the upper limit, the number of found discontinuities
in the signal, and the size of the signal. The first two
match the desired functionality of the SUT in question,
while the third favors the search for shorter test cases. A
shorter test case takes less time to execute and is easier
to understand and evaluate by a domain specialist.

The interaction allows domain specialists to use their
experience to evaluate and rank the solutions developed
by the ISBST system. To allow this interaction to take
place in a meaningful way, the system uses represen-
tations that are relevant to the domain specialist and
that allow for a fluid communication of the necessary
information to them. It also allows for domain specific
representation, separating the domain specialist from the
minutiae of the underlying ISBST system.

This means that the specialists in question will con-
tinue to work with concepts and ideas familiar to them
and do not need to develop software-specific skills to
use the ISBST system to create test cases.

The ISBST system (Fig. 1) consists of two nested
cycles.

The inner cycle contains the search based software
testing system that forms the basis of our approach.
The domain specialist guides the search indirectly, by
selecting the quality criteria that they consider important
at a given time and prioritizing them. The fitness function
is then adapted to reflect those priorities.

The outer cycle handles the interaction with the do-
main specialist, including quality criterion selection and
prioritization, and the visualization of the candidates.

On a more technical level, the inner cycle is the back-
end of the system and has been developed in Ruby. It
uses the differential evolution algorithm found in the
FeldtRuby library to evolve the candidate solutions, and

3



then a variant of Bentley’s Sum of Weighted Global
Ratios [15] method for evaluating them.

The outer cycle uses combination of html and
javascript to display the candidate solutions to the
domain specialist. The Data-Driven Documents library
(D3) to provide a suitable graphical visualization for the
candidate solutions.

As mentioned above, Takagi [10] identifies user fa-
tigue as a main problem in using interactive evolutionary
computation. He also proposes some methods of allevi-
ating that problem.

In our system, the outer cycle handles any issues
regarding the interaction with the domain specialist, in-
cluding the prevention of user fatigue. To this end, some
of the methods presented in [10] have been adopted.
Only some of the large number of solutions being gener-
ated are displayed, with the selection being performed on
the basis of the priorities the domain specialist has stated.
Interaction events take place once every 500 optimization
steps, to further alleviate the problem of fatigue.

B. Use of the ISBST System

The current ISBST prototype is used via a web inter-
face. It allows the domain specialist to select from a list
of objectives those that are relevant to them currently and
to provide a prioritization by assigning the appropriate
weight to each objective.

The weighting provided is used to dynamically de-
velop the Intermediate Fitness Function (IFF) that will
be used by the ISBST to create the first set of candidate
solutions.

During the next interaction step, the domain specialist
can evaluate the top ranked solutions from that set. An
overview of the candidate solutions allows for an at-a-
glance comparison (Fig 2), while individual views can
provide additional information.

It is also during the interaction step that the domain
specialist to adjust their selection and prioritization of the
objectives by re-weighting them. Once all these activities
are complete, the process of dynamically computing the
IFF, developing a new set of candidate solutions and
presenting the top ranked ones for evaluation is repeated
until one or more satisfactory candidate solutions have
emerged.

V. EMPIRICAL EVALUATION

The empirical evaluation of the ISBST prototype has
two goals: the wider one of investigating the applicability
of ISBST for companies in this industrial domain, and
the narrower evaluation of the interaction mechanisms
chosen for the prototype. These goals constitute an initial
evaluation, part of the wider goal of determining what is

Fig. 2. An overview of the best available candidate solutions during
an interaction. The diagram shows information regarding the score
each candidate solution obtained regarding the three objectives that
were used for the evaluation: Length of the test case (Y axis), the
degree to which each test case approaches or even exceeds a set upper
limit is given by the Upper Limit (X axis) score, and the number of
discontinuities that were discovered (color). This diagram provides an
at-a-glance way of comparing candidates. More information on each
candidate is also available in the form of an individual view.

Training Session

Academic SettingIndustrial Setting
Preliminary 

Stage

Continuous 
Development 

Stage ISBST System 
Prototype

Development 
Process

Diversity 
Evaluation

Evaluation 

Workshops
Interviews

Further Validation

ISBST System 
Enhancement 

and 
Development

Validation 
using 

Production 
Code

Solution 
Quality 

Evaluation

Fig. 3. An overview of the stages and empirical work of this study.

the level of quality of the tests found using this method.
An overview of the evaluation method can be seen in
figure 3.

The first goal, the applicability of ISBST in this
industrial context, was evaluated by the degree to which
the prototype system evolved solutions according to the
search objectives and weightings set by the domain
specialist.

The second goal, evaluating and improving the inter-
action mechanism used by the ISBST prototype system.
The mechanism is that of dynamically developing the In-
termediate Fitness Function (IFF) based on the objective
selection and re-weighting. To evaluate this mechanism,
we measure the degree to which the diversity of the
resulting test cases is affected by the choice of fitness
function.

The empirical evaluation consisted of two stages. In
the first stage, the choice of interaction mechanism
was validated in a laboratory setting. The second stage

4



consisted of evaluating the ISBST prototype with the
company’s development and testing team. In practice, the
two stages overlapped into a Continuous Development
Stage (fig. 3), with new information being incorporated
into the system.

The table I, shows a few of the strategies of use that
were investigated as part of the empirical evaluation. The
effect of each of the strategies on candidate population
diversity can be seen in Figure 4.

The second stage consisted of workshops and inter-
views with the development and testing team. These
workshops provided further validation for the interaction
mechanism, as well as lessons regarding improvements
that can be made to the system.

The workshops also resulted in a set of lessons
learned, described in Table II.

Overall the results indicate that the mechanisms we
have used to handle the interaction between the domain
specialist and the ISBST prototype are useful and usable.
The domain specialists responded well to the prototype
and were extremely helpful both in evaluating it and in
providing suggestions for improvements in subsequent
versions.

On a more practical level, a number of the tests gener-
ated were successful in achieving the search objectives,
i.e. identifying inputs that cause the system of exceed the
maximum value set or cause the output signal to have
discontinuities.

VI. DISCUSSION

One medium term goal is to tap into the knowledge
and experience of domain specialists to guide the ISBST
system towards interesting and meaningful test cases,
thus improving quality without leading to prohibitive
costs. Another is to apply this concept in other domains
that can benefit from automated test case development,
yet where domain knowledge is vital. Further still, other
phases of the software development process could also
benefit from the combination of human insight and
automated computing power.

In the long term, we hope to enable human inspiration
and experience, things that cannot be captured in an
automated system, to guide rather than limit software
development. Such human specific contributions would,
therefore, actively improve the solutions rather than
being abstracted away as inconvenient or unpredictable.

In addition to this vision, however, some threats to the
validity of this study must also be discussed.

The ISBST prototype system was developed for a
specific company and is therefore limited by using a
single set of procedures and relying on one source of
information and experience. That said, the company

develops a wide range of embedded software for a
generic type of controller. Future studies will investigate
the issue of generalizability further, but, based on current
results, we feel that this approach shows considerable
promise.

VII. CONCLUSIONS

This paper has presented an industrial application of
search based algorithms. The Interactive Search Based
Software Testing (ISBST) prototype system we have
proposed and implemented uses the knowledge and
experience of domain specialists to guide the search
algorithms towards interesting solutions.

Initial results are promising, showing that the interac-
tion between domain specialists and automated test case
generation tools is a sound approach and can yield useful
results. The same results also show the importance of
the interaction mechanisms and of the information being
provided to the domain specialists, in order to make their
decisions.

On a higher level, the importance of dynamic valida-
tion, with company personnel and in an industrial context
is apparent, as practical use of the prototype yielded
more information that the preceding static validation
efforts.

REFERENCES

[1] P. McMinn, “Search-based software testing: Past, present and
future,” Fourth International Conference on Software Testing,
Verification and Validation Workshops, pp. 153–163, 2011.

[2] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-
based testing for non-functional system properties,” Information
and Software Technology, vol. 51, no. 6, pp. 957–976, 2009. [On-
line]. Available: http://dx.doi.org/10.1016/j.infsof.2008.12.005

[3] R. Feldt, “An interactive software development workbench based
on biomimetic algorithms,” Gothenburg, Sweden, Tech. Rep. 02-
16, November 2002.

[4] M. Harman and B. F. Jones, “Search based software engineering,”
Information and Software Technology, no. 43, pp. 833–839, 2001.

[5] S. Xanthakis, C. Ellis, C. Skourlas, A. L. Gall, S. Katsikas, and
K. Karapoulios, “Application of genetic algorithms to software
testing,” in Proceedings of the 5th International Conference on
Software Engineering and Applications, Toulouse, France, 7-11
December 1992, pp. 625–636.

[6] R. Feldt, “Genetic programming as an explorative tool in early
software development phases,” in Proceedings of the 1st In-
ternational Workshop on Soft Computing Applied to Software
Engineering (SCASE ’99). University of Limerick, Ireland:
Limerick University Press, 12-14 April 1999, pp. 11–20.

[7] M. Harman, S. A. Mansouri, and Y. Zhang, “Search based
software engineering: A comprehensive analysis and review of
trends techniques and applications,” Tech. Rep. TR-09-03, April
2009.

[8] A. Arcuri and X. Yao, “Search based software testing of object-
oriented containers,” Information Sciences, vol. 178, no. 15, pp.
3075 – 3095, 2008.

5



TABLE I
INTERACTION STRATEGIES USED TO INVESTIGATE THE PRESERVATION OF POPULATION DIVERSITY

Scenario Description
A Non-dynamic, multi-objective fitness function.
B Focus in on one single objective that completely and consistently outweighs the others.
C The objective under focus outweighs the others, but is changed at the last step.

D A more balanced approach. One objective outweighs the others, but it is not the sole
focus of attention.

0 50000 100000 150000

0
10

20
30

40
50

A1

UpperLimit 

Le
ng

th
 

0 50000 100000 150000

0
10

20
30

40
50

B1

UpperLimit 

Le
ng

th
 

0 50000 100000 150000

0
10

20
30

40
50

C1

UpperLimit 

Le
ng

th
 

0 50000 100000 150000

0
10

20
30

40
50

D1

UpperLimit 

Le
ng

th
 

A2

Number of Discontinuities

N
um

be
r 

of
 C

an
di

da
te

s

0 1 2 3 4 5

0
50

10
0

15
0

B2

Number of Discontinuities

N
um

be
r 

of
 C

an
di

da
te

s

0 1 2 3 4 5

0
50

10
0

15
0

C2

Number of Discontinuities

N
um

be
r 

of
 C

an
di

da
te

s

0 1 2 3 4 5

0
50

10
0

15
0

D2

Number of Discontinuities

N
um

be
r 

of
 C

an
di

da
te

s

0 1 2 3 4 5

0
50

10
0

15
0

Fig. 4. Population diversity after a set of Interactive Objective Re-Weightings

TABLE II
LESSONS LEARNED AS A RESULT OF THE EMPIRICAL EVALUATION

Lesson Description

1 Understandability. Providing clear, understandable, and accurate information to the domain specialist is the key
element in establishing a meaningful interaction between them and the ISBST system.

2 Variation. A single developer may work on several systems in a short amount of time. In addition, there is a
large amount of variation in terms of the types of systems developed within the same company.

3
Individual Preferences. Even when faced with similar systems, different individual domain specialists may have
different preferences regarding how the interaction should take place and what information should be made
available.

4
Dynamic Validation. Dynamically validating the system allowed us to identify potential problems in a timely
manner and to develop a system that was relevant to our industrial partners and that could, in turn, benefit from
their experiences.

[9] S. Mairhofer, R. Feldt, and R. Torkar, “Search-based software
testing and test data generation for a dynamic programming
language,” in Proceedings of the 13th annual conference
on Genetic and evolutionary computation, ser. GECCO ’11.
New York, NY, USA: ACM, 2011, pp. 1859–1866. [Online].
Available: http://doi.acm.org/10.1145/2001576.2001826

[10] H. Takagi, “Interactive evolutionary computation: fusion of the
capabilities of ec optimization and human evaluation,” Proceed-
ings of the IEEE, vol. 89, no. 9, pp. 1275 –1296, sep 2001.

[11] J. Secretan, N. Beato, D. B. D Ambrosio, A. Rodriguez,
A. Campbell, and K. O. Stanley, “Picbreeder: evolving pictures
collaboratively online,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’08. New
York, NY, USA: ACM, 2008, pp. 1759–1768. [Online].
Available: http://doi.acm.org/10.1145/1357054.1357328

[12] B. Marculescu, R. Feldt, and R. Torkar, “A concept for an
interactive search-based software testing system,” in Search
Based Software Engineering, ser. Lecture Notes in Computer
Science, G. Fraser and J. Teixeira de Souza, Eds. Springer

Berlin Heidelberg, 2012, vol. 7515, pp. 273–278. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33119-0 21

[13] I. C. Parmee, D. Cvetkovic, A. H. Watson, and C. R. Bonham,
“Multiobjective satisfaction within an interactive evolutionary
design environment,” Evolutionary Computation, vol. 8, no. 2,
pp. 197–222, 2000.

[14] G. Fraser and A. Arcuri, “Evosuite: automatic test suite
generation for object-oriented software,” in Proceedings
of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software
engineering, ser. ESEC/FSE ’11. New York, NY,
USA: ACM, 2011, pp. 416–419. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025179

[15] P. Bentley and J. Wakefield, “Finding acceptable solutions in the
pareto-optimal range using multiobjective genetic algorithms,”
in Soft Computing in Engineering Design and Manufacturing,
P. Chawdhry, R. Roy, and R. Pant, Eds. Springer London, 1998,
pp. 231–240.

6


