Indirect Effects in Evidential Assessment: A Case Study
on Regression Test Technology Adoption

Emelie Engstrom
Software Engineering
Research Group
Dept. of Comp. Science
Lund University, Sweden

ABSTRACT

Background: There is a need for efficient regression test-
ing in most software development organizations. Often the
proposed solutions involve automation. However, despite
this being a well researched area, research results are rarely
applied in industrial practice. Aim: In this paper we aim
to bridge the gap between research and practice by pro-
viding examples of how evidence-based regression testing
approaches can be adopted in industry. We also discuss
challenges for the research community. Method: An indus-
trial case study was carried out to evaluate the possibility
to improve regression testing at Sony Ericsson Mobile Com-
munications. We analyse the procedure undertaken based
on frameworks from the evidence based software engineer-
ing, EBSE, paradigm (with a focus on the evidence) and
automation literature (with a focus on the practical effects).
Results: Our results pinpoint the need for systematic ap-
proaches when introducing a new tool. Practitioners and re-
searchers need congruent guidelines supporting the appraisal
of both the evidence base and the pragmatic effects, both
direct but also indirect, of the changes. This is illustrated
by the introduction of the automation perspective.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms

Measurement, Human Factors

Keywords

Evidence-based, Technology Adoption, Regression Testing,
Case Study

1. INTRODUCTION

The cost for testing software increases with increasing
size and complexity of software systems. At the same time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 2012 ACM 978-1-4503-1509-8//12/09 ...$15.00.

Robert Feldt
Div. of Software Engineering
Chalmers University of
Technology and Gothenburg
University, Sweden
emelie.engstrom@cs.lth.se robert.feldt@chalmers.se

Richard Torkar
Div. of Software Engineering
Chalmers University of
Technology and Gothenburg
University, Sweden
richard.torkar@chalmers.se

more efficient software development strategies have emerged
which demand more frequent testing, e.g. agile strategies
with continuous integration of software updates, or testing
of a broader scope of products, e.g. software product line
development [2, 18]. Thus the share of testing costs of the
total development cost increases as well and testing easily
becomes a schedule or cost bottleneck or it becomes inade-
quate (in worst case both). Regression testing is conducted
in order to verify that changes to a system has not nega-
tively impacted on previously functioning software. Thus
efficient regression testing strategies are especially impor-
tant in organizations where software is frequently updated
or when a range of different products are derived from the
same software base.

However, there is a gap between research and practice
of regression testing. Even though several systematic ap-
proaches for both prioritization and selection of regression
test cases have been proposed and evaluated in literature [7,
19], they are not widely used in industry [4]. In many cases
the methods and techniques do not scale while in other cases
industry practice is not mature enough to implement them.

Evidence based software engineering, EBSE, is a paradigm
aiming to support adoption of new software technology and
methods based on sound, empirical evidence. The core tool
of EBSE is systematic literature reviews and the focus is on
the identification and appraisal of evidence However, EBSE
have been shown to be very challenging for non-researchers
and rigorous and relevant evidence may not exist to answer
their questions [13, 14].

In this paper we aim to bridge the gap between research
and practice by providing examples of how EBSE can be ap-
plied in industry and pinpointing challenges for the research
community based on experiences from a case study [6] car-
ried out at Sony Ericsson Mobile communications, SEMC.
We describe and analyze the procedures undertaken to find
a relevant regression testing technique and to evaluate the
benefits of introducing it into the testing process.

It is not enough to focus on direct evidence isolated to
a technique but the context and the practical effects of the
changes also need to be considered. Thus we combine guide-
lines on EBSE [3] by Dyba et al. with guidelines on au-
tomation with respect to human-computer interaction [11]
by Parasuraman et al. as a framework for our analysis. A
recent example of automation anlysis in technology adoption
in software engineering is given by Borg [1]. This perspective
is essential also when considering evidence for the efficacy of
regression testing techniquessince it will involve automation



EBSE-approach Automation-approach

Focus on research answering the
question which technique to use

Focus on practice answering the
question what should be

for the automation outomated
1. Askan answerable question 1. ldentify type of automation
2. Findthe best evidence
3. Criticallyappraisethe evidence
4. Applythe evidence 2. Identify level of automation
3. Apply primary evaluation criteria )

5. Evaluate performance 4, Applysecondary evaluation criteria

Figure 1: Overview of the EBSE approach described
by Dyba et al. [3] and the automation approach de-
scribed by Parasuraman et al. [11].

of some sort. For each of the five steps of EBSE, the eval-
uation and decision tasks of the automation procedure are
discussed and embodied with examples from our case study,
followed by a discussion about current challenges and advice
for practitioners and researches.

The paper is organized as follows: Section 2 describes the
synthesis of the EBSE and automation model and Section 3
reports the case study and contains the analysis. Both these
sections are organized according to the five different steps of
EBSE. In section 4 we discuss the lessons learned about the
methodological strengths and limitations of evidence-based
practice and in Section 5 we conclude the paper with advice
for practitioners and researchers.

2. THE ANALYSIS FRAMEWORK

Dyba et al. [3] propose a systematic EBSE approach for
practitioners. It involves five steps to support and improve
decisions on technology adoption. Similarly, Parasuraman
et al. [11] propose a procedure involving four steps of evalu-
ation and decision tasks that helps answer questions about
what should be automated and to what level. Primary and
secondary evaluation criteria are suggested to be applied
iteratively while adjusting the decisions. The two models
complement each other in case of introducing automation
to the software engineering process. Below we describe the
synthesized framework, and it’s application on regression
test technology adoption, according to the five steps in the
EBSE approach.

2.1 Ask an answerable question.

This step corresponds to the initial steps in the Automa-
tion model answering questions on what to automate and
what type of automation should take place. Parasuraman
suggest a classification of automation types based on four
types of human information processing. This leads to four
different classes of functions that can be automated: infor-
mation acquisition, information analysis, decision and action
selection, and action implementation [11].

In case of test automation, the type of automation de-
pends on the scope of the testing. Testing software typically
involve several test activities which all may be automated in
different ways with different goals: test planning, test case
design, test execution and analysis of test results. Automa-
tion may seek to replace humans performing repetitive and
simple tasks e.g. executing test cases or have a goal to ac-

complish something beyond human capabilities e.g. decision
support. Regression testing research focus on the latter.

The level of testing under consideration is another factor
of the automation scope. Goals and strategies for automa-
tion may vary with level of test [4]. Test planning at unit
level could for example be based on code coverage analyses
while at the integration testing level combinatorial strategies
could be more relevant. Automation at system level is more
complex and a more thorough cost benefit analysis could be
a good idea.

Many challenges in regression testing are not specific for
regression testing but improvements may be achieved through
improvements of other tasks e.g. automation of test execu-
tions or design for testability [4]. Hence, it is important to
specify the effect targets of the intended automation and en-
sure that they are aligned with the scope of the automation.

A good understanding of the context helps to identify,
relevant effect targets and a proper scope for the automa-
tion. Even though there is a common understanding of what
regression testing is and why it is applied in industry, the
variation in practices is large. Regression testing is applied
differently in different organizations, at different stages of
a project, at different levels and with varying frequency [4].
Furthermore regression testing is not an isolated activity but
is strongly dependent on the context in which it is applied.

2.2 Find the best evidence

The selection of technique to implement should ideally be
based on research, and guided by relevant classifications of
empirical evidence, typically systematic literature reviews,
which could be mapped to a similarly relevant description
of the current context, scope and effect target. To deter-
mine which regression testing technique is appropriate for a
certain situation, several factors need to be considered such
as which input does the technique require?, on what level
of abstraction is the analysis made?, what are the claims of
a technique, and what empirical support is there for these
claims? [7]. This step has no counterpart in the Parasura-
man model since they assume a different situation in which
a specific type of automation has already been selected or
is being evaluated. In the EBSE model one should consider
the breadth of available evidence and techniques.

Several literature reviews on regression testing have been
published lately. A thorough overview of different regres-
sion testing strategies in literature is given by Yoo and Har-
man [19] and it provides a good starting point for the search.
Here the different areas of minimization, prioritization and
selection are explained and investigated. A classification
scheme and classification of regression test selection tech-
niques is provided by Engstrom et al. [7].

2.3 Critically appraise the evidence

This is also a step which is specific for the EBSE approach.
EBSE recommend practitioners to make use of available
summaries of evidence, e.g. systematic literature reviews
and systematic maps. In cases were such summaries are
not available practitioners may be guided by checklists [3]
in appraising (often a smaller set of) published studies.

The current evidence base on regression test selection does
not offer much support for selecting the best automation
technique. Although several empirical evaluations of regres-
sion testing techniques have been made lately, the evidence
base is incomplete and sometimes even contradictory. Re-



gression testing techniques are context dependent and in
many cases evaluations are made only in one specific context.
It is rather the different implementations of the techniques
than the high level concepts that are evaluated. Moreover,
often only one aspect is evaluated for a technique e.g. either
the level of cost reduction or the level of fault detection [7].
Indirect effects of introducing this type of automation are
rarely discussed.

2.4 Apply the evidence

In this step the evidence should be integrated with the
knowledge about the concrete situation and the pragmatic
effects of the changes should be considered. Automation
changes may have both direct and indirect effects. This
step concerns the indirect effects , for example cognitive ef-
fects, effects on related processes (e.g. requirements engi-
neering and design) and long term effects, and corresponds
with the identification of level of automation and application
of primary evaluation criteria in the Parasuraman model.
Sheridan and Verplank define 10 different levels of automa-
tion [17] based on the amount of user interaction required.
Although they are not defined with a focus on software test-
ing they are applicable in this context.

The primary evaluation criteria according to Parasuraman
et al focus on the consequences for the human performance
after the automation has been implemented. For exam-
ple, Parasuraman states that ‘evidence suggests that well-
designed information automation can change human oper-
ator mental workload to a level that is appropriate for the
system tasks to be performed’ [11]. An example can be the
listing of test cases in a prioritized list to help testers make
the right decision. In addition to mental workload, Parasur-
aman mentions situation awareness, complacency and skill
degradation as primary evaluation criteria to be taken into
consideration.

To help better understand the changes that an automation
leads to we have found it useful to establish pre- and post-
automation task flows. Detailed such analyses could involve
the use of value stream maps [10] but we have found even
simpler identification procedures to have value. Based on
the description of the current testing task flow, and an initial
decision on the technique to use for the automation (or at
least the type of task to be automated a la Parasuraman),
changes between current practice and improved automated
practice can be identified. It is useful to consider different
types of changes such as: changed tasks, added tasks and
removed tasks. It is important not to miss any added tasks
such as creation or collection of inputs that the automated
process or tool requires, maintaining the automation in case
of context changes or managing and processing the output
from the automated process.

2.5 Evaluate performance

This step concerns the direct effects of the automation and
may be evaluated against the effect targets identified in the
first step. For this step the EBSE and automation guidelines
are consistent. The selected technique should be evaluated
within the context where it is to be applied. Results from
this evaluation should be documented and may be reused in
future automation projects either within the organization or
as a contribution to the general knowledge base.

3. THE CASE STUDY

The case study was carried out in four steps [6] start-
ing with A) exploratory semi-structured interviews to bet-
ter understand the context, effect targets and scope of the
automation. B) Select and implement a suitable method.
The methods were C) quantitatively evaluated with respect
to their fault detection efficiency, and finally D) the testers’
opinions about the implemented methods were collected and
analyzed. Results from this case study has previously been
reported by Engstrom et al. [6]. In this section we de-
scribe our application of the framework in Section 2 and
discuss current challenges and advices for practitioners and
researches.

3.1 Asking an answerable question.

This step involves describing the context and identifying
the effect targets of the regression test automation.

3.1.1 describing the context

To gain more insights into the problem we carried out
interviews with a number of key persons and used a frame-
work proposed by Petersen and Wohlin [12] to structure the
context information. The context description served sev-
eral purposes, identification of context constraints relevant
for the selection of technique, support in the evaluation of
indirect effects of changes as well as support in the com-
munication of the results of the evaluation of direct effects
through the enabling of analytical generalization. Details
about the context description are reported in [6]

3.1.2 identifying the effect target

One of the problems with the current method in our case
study was its dependence on experienced testers with knowl-
edge about the system and the test cases. There was a risk
that the selected test suite was either too extensive or too
narrow; a tester with lack of experience in the area could
have trouble estimating the required time and resources.
Moreover, the selected test suite could be inefficient and
misleading. Even experienced testers could select inefficient
test suites since test cases were selected in a routinely man-
ner by just selecting the same test cases for every regression
test session. Since the selection was based on judgment,
there was no evidence that it was the most efficient test
suite. Hence, the following were the expected benefits of a
tool supported selection procedure:

e increased transparency
e improved cost estimation
e increased test efficiency

e increased confidence

The scope and effect targets identified in our case study
correlate with general needs in industry [4] and is partly
inline with the scope of most regression test selection and
prioritization techniques in literature [19]. Similar problems
were identified in a survey on regression testing practices [4].
Participants found it hard to assess the impact of changes
on existing code and to make good selections, to prioritize
test cases with respect to product risks and fault detection
ability, and to be confident in not missing safety critical
faults. Determining the required amount of tests was also
considered a problem as well as to assess the test coverage.



3.2 Finding the best evidence

The selected scope of the automation directed the search
towards the regression testing literature, and the list of effect
targets and context constraints influenced the selection of
automation technique. The hypothesis that history-based
test case prioritization could improve the current situation
was a starting point for the case study which to some extent
made the search and selection of technique biased. Only
history-based regression testing techniques which did not
require source code access were considered.

Most of the proposed techniques in literature are code
based (source code, intermediate code or binary code) and
based on analysis at a low level of abstraction (e.g. state-
ments). However there are examples of techniques based
on analysis at higher abstraction levels as well as on other
types of input. Some techniques are based on a certain type
of specifications or models. There are also some recent ex-
amples of both selection and prioritization techniques based
on project data, such as failure reports or execution history
of a test case. Ome group of techniques is claimed to be
safe, meaning they do not exclude any test case that have
a possibility to execute parts of the system that may have
been affected by a change. This property is only relevant
for selection, but might be important for certain types of
systems (e.g. safety critical) [7].

3.3 Appraising the evidence

In our case the selection of technique was not guided by
empirical evidence on the performance of the technique. In-
stead the automation choice was guided by the reports of the
nature of the proposed techniques. The technique proposed
by Fazlalizadeh et al. [8] was selected because it was based
on historic project data, could be implemented without ac-
cess to source code and allowed for multiple prioritization
criteria.

3.4 Applying the evidence

Our case study spans one iteration over the steps de-
scribed in 2, identification of level of automation, identifi-
cation of changes and evaluation of the effect of changes.

3.4.1 Identification of level of automation

In our case the automation level would be 4: "Computer
offers a restricted set of alternatives and suggests one, but
human still makes and implements final decision” according
to Sheridan and Verplank [17]. Since the scope of the au-
tomation in the case study is pure decision support and not
execution of tests, it corresponds to a low level of automa-
tion. On the other hand there are differences in levels within
this scope that could be interesting to pinpoint. Instead of
calculating total priority values by combining several pri-
oritization criterion, priority values could be calculated for
each criteria leaving the weighting of importance to the hu-
man which would be an example of automation at even lower
level but still not zero.

3.4.2  Identification of changes

The scope of the automation in our case study involved
the test planning and selection of test suites for regression
testing. No common procedure for how this is done existed,
but different testers developed their own strategies. Thus
the task flow directly affected by the automation cannot be

described in more detail. This situation seems to be common
in industry. [4]

Changed, added and removed tasks in the case study may
be described as follows:

Changed tasks.

- The suggested automation would change the selection
task from being an ad-hoc task to involve a more systematic
procedure. Decisions on focus, scope and constraints of a
test session are needed as input to the tool and thus have to
be explicit.

Added tasks.

- New tasks relate to the use of the tool. There is an
initial learning effort for using the tool. It also has to be
maintained and evolve as the prerequisites change. The out-
come of the tool (a selected test suite) needs to be reviewed
before test execution. In this case the tool was a plug in
to the supporting tool already in use at the company and
it collected data from the existing test data base. No input
data of any other format is required and thus no such extra
tasks (development and maintenance of new artifacts) are
added.

Removed tasks.
- The selection and documentation of test scope are achieved
by the tool instead of manual procedures.

3.4.3 Evaluation of the effect of changes

Parasuraman’s list of cognitive effects may be used as a
checklist for one type of indirect effects. Another checklist
may be created by combining the list of task changes with
the previously described elements of the context into a ma-
trix. Each item in the matrix represents a combination of
a task change and a context facet to be considered. The
indirect effects discussed in this section are identified with
the help of both these checklists.

The mental effort for the decisions may increase since in
many cases these types of decisions are made ad-hoc in a
routinely manner. With a semi-automatic tool testers are
forced to perform the selections more systematically and of
course to learn and handle a tool. This increased effort might
lead to that the tool is not used properly especially since the
regression testing activity is so frequent. On the other hand
they do not have to browse through large amounts of poorly
structured test cases.

There is also a risk in trusting the tool too much. Deci-
sions are complex and context dependent and the variation
in regression test situations cannot be fully captured by a
tool. In our case study the product maturity is low and the
software system complex. The large amount of internal and
hidden dependencies prevent safe selections at a reasonable
cost. Furthermore, in a very changing context, historical
data might not be a good predictor of fault detection prob-
ability at all. However, the quantitative evaluation in our
example case showed increased efficiency in that particular
case, indicating a possibility to improve regression testing
with the tool. Still the suggested test suite need to be man-
ually reviewed. Only a low level of automation is possible
to achieve.

With a low level of automation the risk of skill degradation
and decreasing situation awareness is minimal. Changing
the task from manually selecting each test case to manually



review a suggested test suite would probably increase the
testers awareness of unexpected dependencies but also de-
crease their awareness of what is in the test data base and
what might be missing. A more transparent regression test-
ing approach eases synchronization of work between teams
and enables their cross learning.

A positive effect of automatically generating the test plan
in the test management tool instead of manually entering
the test cases is increased consistency in the documentation.
Lack of consistency in test documentation may lead to un-
necessary duplication in distributed testing [5]

3.5 [Evaluating performance and seek ways to
improve it.

The direct effects of the implemented automation were
shown to be increased transparency and increased efficiency.
A prototype tool was developed for the purpose of evaluat-
ing the automation in the case study. Adaptations to the
actual context were inevitable and two different versions of
the technique were implemented: one as close to the original
proposal as possible and one as close to the current decision
procedure as possible incorporating a number of different
prioritization criteria that was assumed to be important by
the local experts. These criteria were identified through the
initial interviews and included: historical effectiveness, exe-
cution history, static priority, age, cost, focus of test session,
scope of session and current status of the test case. A more
detailed description of these factors are found in [6]

Two quantitative evaluations and one qualitative evalua-
tion were carried out to evaluate the effects of automation
(Details about the evaluations are provided by Engstrom et
al. [6]) with respect to the effect targets: increased trans-
parency, increased test efficiency and increased confidence.
No data regarding the ezecution cost for a test case or group
of test cases was available and thus this aspect could not be
evaluated.

Increased transparency is achieved with any kind of au-
tomation, since no systematic method for regression testing
was currently in use. If the use of a systematic method or
implemented tool does not decrease test efficiency or confi-
dence, it is considered an improvement of the current situa-
tion.

Test efficiency regards the number of faults revealed per
executed test case and was evaluated in two ways in the case
study: 1) by comparing the efficiency of the execution order
(prioritization) of test cases in the suites and 2) by analyzing
test suite selections of the same magnitude as correspond-
ing manually selected suites. Results from the quantitative
evaluation constitutes strong evidence for the possibility to
improve efficiency in the current case but little relevance in
terms of possibility to generalize to other contexts.

To reach and measure confidence in a method is in itself
non-transparent, since it deals with the gut feelings of the
testers. To some extent it relates to coverage. If a method
can be shown to include all presumed important test cases,
the confidence in it is high. However, optimizing a method
to include presumed important coverage aspects affect test
efficiency negatively, since it adds test cases to the selection
without respect to their probability of detecting faults.

4. DISCUSSION

In many cases adoption of software engineering evidence
in practice involve some type of automation. When chang-

ing the level of automation in a process it is not enough to
appraise the direct evidence of a technique since any type of
automation also entails indirect effects. In our case study we
identified a number of indirect effects: increased mental ef-
fort for decisions, risk for over trust in tool, skill degradation
and decreased situation awareness. Also, positive indirect
effects were identified such as increased situation awareness,
increased consistency in test documentation, easier synchro-
nization of work and cross learning between teams. It is not
enough to answer the question ”"Are these evidence valid,
have impact and applicable?” it is critical to consider the
questions "What are indirect/additional effects when apply-
ing this and what type of evidence is there that negative
indirect effects do not outweigh any positive direct effects?”.

Our analysis of the regression test automation procedure
show the importance of finding holistic guidelines to support
the adoption of evidence, focusing on both evidence and
practice. This is central for EBSE to have effect. There is a
need for both general guidelines and guidelines for specific
sub areas within software engineering. In our cased study
we created two checklists one with automation effects to
look for, based on experiences from the human-computer
interaction and software test automation disciplines [11, 9],
and one, pointing at changes in the context, based on the
elements of the context description combined with the three
types of changes: added, removed and changed tasks.

In addition to the need for methods to support the evalua-
tion of indirect effects, our case study shows the importance
of finding methods to match the communication of empirical
evidence with guidelines for identifying context constraints
and effect targets present in practice. This is typically an
area where guidelines need to be both general and sub area
specific. To provide support for practitioners in matching
their context with the available evidence, frameworks must
be defined at an abstraction level low enough to cover the rel-
evant aspects of the particular group of techniques address-
ing their effect targets. Still the more abstract framework is
needed to initially identify the scope and effect targets.

Finally, another critical issue for the success of EBSE is
the existence of generalizable results. Artifacts in software
engineering research tend to be context dependent, calling
for systematically replicated evaluations where context fac-
tors are considered. In the case of regression test automa-
tion there is a need for evaluations of high level concepts
of strategies rather than evaluations of specific implementa-
tions of techniques. To support such research it is crucial to
identify the relevant context factors for a specific sub-area
and define frameworks at a proper level of abstraction.

S. CONCLUSION

We have analyzed the procedure of finding a proper tech-
nique for regression test automation and evaluating the ben-
efits of adopting it. Frameworks for EBSE and automation
were combined to provide a more holistic view of the re-
gression test automation procedure. For each of the five
EBSE steps we describe the regression test automation pro-
cedure and provide examples of how to do for practitioners
in similar situations. Advice for practitioners may be sum-
marized regarding the identification of preconditions for the
automation, identification of relevant research and evalua-
tion of effects of the automation.

Identification of preconditions.



It is important to identify scope and effect targets of au-
tomation. Information may be gathered with interviews and
structured according to existing frameworks [12] for context
descriptions in software engineering.

Identification of relevant research.

The search for relevant techniques should be driven by
scope of automation, effect targets and and context con-
straints. Effect targets in our case study correlate with
general needs in industry and are partly addressed by re-
search. Literature reviews on regression testing [7, 19] pro-
vide overviews of the research and are good starting points
for the search. However the lack of generalizable results pre-
vents choices based on empirics.

Evaluation of effects.

Automation changes may have both direct and indirect
effects. To identify indirect effects changed, added and re-
moved tasks need to be identified and the effects of the
changes evaluated. Checklists may guide the analysis The
direct effects may be evaluated against the effect targets.
Frameworks for evaluating cost and efficiency of regression
testing techniques are available [15, 16]

Research challenges involve 1) finding methods for evalu-
ating indirect pragmatic effects of the automation changes
as well as 2) finding methods to match the communication of
the empirical evidence with the description of the industrial
context where automation is under consideration.

6. ACKNOWLEDGMENTS

We thank Dr. Per Runeson for valuable review comments
on this paper. The work was supported by VINNOVA (the
Swedish Governmental Agency for Innovation Systems) to
SWELL, Swedish research school in Verification and Vali-
dation.

7. REFERENCES

[1] M. Borg. Findability through traceability - a realistic
application of candidate trace links? In 7th
International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2012,
pages 173-181, June 2012.

[2] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, 2001.

[3] T. Dyba, B. A. Kitchenham, and M. Jorgensen.
Evidence-based software engineering for practitioners.
IEEE Software, 22(1):58 — 65, Jan. 2005.

[4] E. Engstrom and P. Runeson. A qualitative survey of
regression testing practices. In M. Ali Babar,

M. Vierimaa, and M. Oivo, editors, Product-Focused
Software Process Improvement, volume 6156 of Lecture
Notes in Computer Science, pages 3—16. Springer
Berlin / Heidelberg, 2010.

[5] E. Engstrom and P. Runeson. Test overlay in an
emerging software product line é,AS an industrial case
study. Information and Software Technology, 2012.

[6] E. Engstrom, P. Runeson, and A. Ljung. Improving
regression testing transparency and efficiency with
history based prioritization éAS an industrial case
study. In Proceedings of the 4th International
Conference on Software Testing Verification and
Validation. IEEE Computer Society, 2011.

[7] E. Engstrom, P. Runeson, and M. Skoglund. A
systematic review on regression test selection
techniques. Information and Software Technology,
52(1):14-30, Jan. 2010.

[8] Y. Fazlalizadeh, A. Khalilian, M. A. Azgomi, and
S. Parsa. Prioritizing test cases for resource constraint
environments using historical test case performance
data. In Computer Science and Information
Technology, 2009. ICCSIT 2009. 2nd IEEE
International Conference on, pages 190 —195, Aug.
2009.

[9] M. Fewster and D. Graham. Software Test
Automation. Addison-Wesley Professional, Sept. 1999.

[10] S. Mujtaba, R. Feldt, and K. Petersen. Waste and lead
time reduction in a software product customization
process with value stream maps. In Software
Engineering Conference (ASWEC), 2010 21st
Australian, pages 139-148. IEEE, 2010.

[11] R. Parasuraman, T. B. Sheridan, and C. D. Wickens.
A model for types and levels of human interaction
with automation. Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on,
30(3):286 —297, May 2000.

[12] K. Petersen and C. Wohlin. Context in industrial
software engineering research. In 3rd International
Symposium on Empirical Software Engineering and
Measurement, 2009. ESEM 2009, ESEM ’09, pages
401-404, Washington, DC, USA, Oct. 2009. IEEE.

[13] A. Rainer and S. Beecham. A follow-up empirical
evaluation of evidence based software engineering by
undergraduate students. In 12th International
Conference on Evaluation and Assessment in Software
Engineering, University of Bari, Italy, 2008.

[14] A. Rainer, T. Hall, and N. Baddoo. A preliminary
empirical investigation of the use of evidence based
software engineering by under-graduate students.
https://uhra.herts.ac.uk/dspace/handle/2299/2270,
2006.

[15] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on
Software Engineering, 22(8):529-551, Aug. 1996.

[16] G. Rothermel, R. H. Untch, C. Chengyun, and M. J.
Harrold. Test case prioritization: an empirical study.
In Proceedings IEEE International Conference on
Software Maintenance, pages 179-188, 1999.

[17] T. B. Sheridan and W. L. Verplank. Human and
computer control of undersea teleoperators. Technical
report, July 1978.

[18] D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky.
Agile software testing in a large-scale project.
Software, IEEE, 23(4):30-37, 2006.

[19] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability,
22(2):67-120, Mar. 2012.



