
Empir Software Eng
DOI 10.1007/s10664-014-9301-4

An experiment on the effectiveness and efficiency
of exploratory testing

Wasif Afzal ·Ahmad Nauman Ghazi · Juha Itkonen ·
Richard Torkar ·Anneliese Andrews ·Khurram Bhatti

© Springer Science+Business Media New York 2014

Abstract The exploratory testing (ET) approach is commonly applied in industry, but lacks
scientific research. The scientific community needs quantitative results on the performance
of ET taken from realistic experimental settings. The objective of this paper is to quantify
the effectiveness and efficiency of ET vs. testing with documented test cases (test case based
testing, TCT). We performed four controlled experiments where a total of 24 practition-
ers and 46 students performed manual functional testing using ET and TCT. We measured
the number of identified defects in the 90-minute testing sessions, the detection difficulty,
severity and types of the detected defects, and the number of false defect reports. The results
show that ET found a significantly greater number of defects. ET also found significantly
more defects of varying levels of difficulty, types and severity levels. However, the two test-
ing approaches did not differ significantly in terms of the number of false defect reports

Communicated by: José Carlos Maldonado

W. Afzal (�)
School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
e-mail: wasif.afzal@mdh.se

A. N. Ghazi · K. Bhatti
Blekinge Institute of Technology, SE-37179, Karlskrona, Sweden

A. N. Ghazi
e-mail: nauman.ghazi@bth.se

J. Itkonen
Department of Computer Science and Engineering, Aalto University, Espoo, Finland
e-mail: juha.itkonen@aalto.fi

R. Torkar
Department of Computer Science and Engineering, Chalmers University of Technology|University of
Gothenburg, Gothenburg, Sweden
e-mail: richard.torkar@cse.gu.se

A. Andrews
University of Denver, Denver, CO 80208, USA
e-mail: andrews@cs.du.edu

mailto:wasif.afzal@mdh.se
mailto:nauman.ghazi@bth.se
mailto:juha.itkonen@aalto.fi
mailto:richard.torkar@cse.gu.se
mailto:andrews@cs.du.edu

Empir Software Eng

submitted. We conclude that ET was more efficient than TCT in our experiment. ET was
also more effective than TCT when detection difficulty, type of defects and severity levels
are considered. The two approaches are comparable when it comes to the number of false
defect reports submitted.

Keywords Software testing · Experiment · Exploratory testing · Efficiency · Effectiveness

1 Introduction

Software testing is an important activity to improve software quality. Its cost is well known
(Yang et al. 2008; Bertolino 2008). Thus, there has always been a need to increase the effi-
ciency of testing while, in parallel, making it more effective in terms of finding defects.
A number of testing techniques have been developed to enhance the effectiveness and
efficiency of software testing. Juristo et al. (2004) present a review and classification of dif-
ferent testing techniques. According to SWEBOK (Abran et al. 2004), the many proposed
testing techniques differ essentially in how they select the test set for achieving the test
adequacy criterion.

Due to the high cost of testing, a lot of research has focussed on automated software
testing. Automated software testing should ideally automate multiple activities in the test
process, such as the generation of test requirements, test cases and test oracle, test case
selection or test case prioritization (Ali et al. 2010). The main reason for automation is to
have improved test efficiency, especially in regression testing where test cases are to be exe-
cuted iteratively after making changes to the software (Dustin et al. 1999). But, as Bertolino
(2007) argues, 100 % automatic testing is still a dream for software testing research and
practice. The software industry today still relies heavily on manual software testing (Berner
et al. 2005; Andersson and Runeson 2002; Hartman 2002) where the skills of professional
testers and application domain experts are used to identify software defects. Our focus in
this paper is on manual software testing as opposed to automated software testing.

The traditional and common approach to software testing is to define and plan test cases
prior to execution and then compare their outputs to the documented expected results. Such
a document-driven, pre-planned approach to testing is called test case based testing (TCT).
The test cases are documented with test inputs, expected outputs and the steps to test a func-
tion (Itkonen et al. 2009; Agruss and Johnson B 2000; Andersson and Runeson 2002). The
major emphasis of TCT remains on detailed documentation of test cases to verify correct
implementation of a functional specification (Abran et al. 2004). The test adequacy criterion
is thus the coverage of requirements. There are undoubtedly certain strengths with the TCT
approach. It provides explicit expected outputs for the testers and handles complex relation-
ships in the functionality systematically (Itkonen et al. 2007; Ahonen et al. 2004; Itkonen
2008; Ryber 2007; Grechanik et al. 2009; Yamaura 2002; Taipale et al. 2006). The test case
documentation can also provide benefits later during regression testing. In this paper we
focus on the actual testing activity and defect detection only.

As opposed to TCT, exploratory testing (ET) is an approach to test software without
pre-designed test cases. ET is typically defined as simultaneous learning, test design and
test execution (Bach 2003; van Veenendaal et al. 2002; Kaner et al. 2008). The tests are,
thus, dynamically designed, executed and modified (Abran et al. 2004). It is believed that

Empir Software Eng

ET is largely dependent on the skills, experience and intuition of the tester. Central to the
concept of ET is simultaneous/continuous learning where the tester uses the information
gained while testing to design new and better tests. ET does not assume any prior appli-
cation domain knowledge1 but expects a tester to know testing techniques (e.g., boundary
value analysis) and to be able to use the accumulated knowledge about where to look for
defects. This is further clarified by Whittaker (2010): “Strategy-based exploratory testing
takes all those written techniques (like boundary value analysis or combinatorial testing)
and unwritten instinct (like the fact that exception handlers tend to be buggy) and uses this
information to guide the hand of the tester. [. . .] The strategies are based on accumulated
knowledge about where bugs hide, how to combine inputs and data, and which code paths
commonly break.”

In one sense, ET reflects a complete shift in the testing approach, where test execution
is based on a tester’s current and improving understanding of the system. This understand-
ing of the system is derived from various sources: observed product behavior during testing,
familiarity with the application, the platform, the failure process, the type of possible faults
and failures, the risk associated with a particular product, and so on Kaner et al. (2008).
Although the term exploratory testing was first coined by Kaner and Bach in 1983, Myers
acknowledged experience-based approaches to testing in 1979 (Myers et al. 1979). How-
ever, the actual process to perform ET is not described by Myers. Instead, it was treated as
an ad-hoc or error guessing technique.

Over the years, ET has evolved into a thoughtful approach to manual testing. ET is
now seen in industry as an approach whereby different testing techniques can be applied.
In addition, some approaches, such as session-based test management (SBTM), have
been developed to manage the ET process (Bach 2000). Finally, ET has also been proposed
to provide certain advantages for industry (van Veenendaal et al. 2002; Naseer and Zulfiqar
2010; Bach 2000; Itkonen and Rautiainen 2005; Kaner et al. 2008; Lyndsay and van Eeden
2003; Våga and Amland 2002) such as defect detection effectiveness as well as better uti-
lization of testers’ skills, knowledge and creativity. The applicability of the ET approach has
not been studied in research literature. The ET approach, despite its claimed benefits, has
potential limitations in certain contexts: when precise repeatability for regression testing is
required or when experienced or knowledgeable testers are not available.

There have only been a few empirical studies on the performance of ET or similar
approaches (Houdek 2002; do Nascimento and Machado 2007; Itkonen et al. 2007; Bhatti
and Ghazi 2010). In these studies, ET has been reported as being more efficient than tra-
ditional TCT. However, as empirical results on ET are still rare, there is a need to do more
controlled empirical studies on the effectiveness and efficiency of ET to confirm and extend
the existing results. This scarcity of research on ET is surprising considering the com-
mon notion that test execution results depend on the skills of testers (Juristo et al. 2004).
Generally there has been little empirical investigation on test execution practices and man-
ual testing. Little is known regarding what factors affect manual testing efficiency or the
practices that are considered useful by industrial testers (Juristo et al. 2004; Itkonen et al.
2007).

Itkonen et al. (2007) compared ET and TCT approaches using time-boxed test execution
sessions in a controlled student experiment, where the test execution time was equal among
the approaches. They reported higher numbers of detected defects and lower total effort
for the ET approach, even though there was no statistically significant difference in defect

1Obviously it will help a tester if such knowledge exists (to find expected risks).

Empir Software Eng

detection effectiveness between the ET and TCT approaches. Further, the detected defects
did not differ significantly with respect to their types, detection difficulty or severity. In the
experiment of Itkonen et al. the TCT approach also produced more false defect reports than
ET (Itkonen et al. 2007). This study extends the experiment of Itkonen et al. by including
both student and industry professionals as subjects and setting an equal total time among
the approaches.

In order to advance our knowledge regarding ET and to further validate the claims
regarding its effectiveness and efficiency, we have conducted an experiment to answer the
following main research question (RQ):

RQ: Do testers, who are performing functional testing using the ET approach, find more
or different defects compared to testers using the TCT approach?

Our main RQ is further divided into three research questions that are given in Section 3.2.
In functional testing, functions or components are tested by feeding them input data and

examining the output against the specification or design documents. The internal program
structure is rarely considered during functional testing.

In this paper, we use the term defect to refer to an incorrect behavior of a software system
that a tester reports, based on an externally observable failure that occurs during testing.
Our experiment only focuses on testing. It excludes debugging and identifying the location
of actual faults. We also need to make a distinction from pure failure counts, because our
analysis does not include repeated failures occurring during same testing session caused by
a single fault.

The rest of the paper is structured as follows. Section 2 presents the existing research
on ET and TCT. Section 3 presents the research methodology, the experiment design,
data collection and analysis. The results from the experiment are presented in Section 4.
Answers to the research questions are discussed in Section 5. The threats to validity are
covered in Section 6. Finally, in Section 7, conclusions and future research directions are
presented.

2 Related Work

A review of experiments on testing techniques is given by Juristo et al. (2004).2 This review
concludes that there is no single testing technique that can be accepted as a fact as they all
are pending some sort of corroboration such as laboratory or field replication or knowledge
pending formal analysis. Moreover, for functional and control flow testing techniques a
practical recommendation is that more defects are detected by combining individual testers
than techniques of both types. This is important because, in one way, it shows that the results
of test execution depend on the tester’s skills and knowledge, even in test case based test-
ing. There is some evidence to support this argument. Kamsties and Lott found that the time
taken to find a defect was dependent on the subject (Kamsties and Lott 1995). Wood et al.
(1997) found that combined pairs and triplets of individual testers using the same technique
found more defects than individuals. There are many possible reasons for the variation in

2For recent reviews on software testing techniques, see Jia and Harman (2011), Ali et al. (2010), da Mota
Silveira Neto et al. (2011), Nie and Leung (2011) and Dias Neto et al. (2007).

Empir Software Eng

the results. Individual testers might execute the documented tests differently; the testers’
ability to recognize failures might be different; or individual testers might end up with dif-
ferent tests even though they are using the same test case design technique. The important
role of personal experience in software testing has been reported in testing research. Beer
and Ramler (2008) studied the role of experience in testing using industrial case studies.
In addition, Kettunen et al. (2010) recognized the importance of testers’ experience. Poon
et al. (2011) studied the effect of experience on test case design. Galletta et al. (1993) report
that expertise increases error finding performance.

ET, as described in Section 1, is an approach that does not rely on the documentation
of test cases prior to test execution. It has been acknowledged in the literature that ET
has lacked scientific research (Itkonen and Rautiainen 2005). Since then, Nascimento et al.
(2007) conducted an experiment to evaluate the use of model-based and ET approaches in
the context of feature testing in mobile phone applications. They found that ET is better
than model-based testing for functional testing and produced better results. The effort was
clearly smaller when applying ET compared to the model-based approach.

Also in the context of verifying executable specifications, Houdek et al. (2002) per-
formed a student experiment comparing reviews, systematic testing techniques and the
ad-hoc testing approach. The results indirectly support hypotheses regarding the efficiency
of experience-based approaches showing that the ad-hoc approach required less effort, and
that there was no difference between the techniques with respect to defect detection effec-
tiveness. None of the studied techniques alone revealed a majority of the defects and only
44 % of the defects were such that the same defect was found by more than one technique.

Research on the industrial practice of software testing is sparse. Some studies show that
test cases are seldom rigorously used and documented. Instead, practitioners report that they
find test cases difficult to design and, in some cases, even quite useless (Ahonen et al. 2004;
Andersson and Runeson 2002; Itkonen and Rautiainen 2005). In practice, it seems that test
case selection and design is often left to individual testers and the lack of structured test
case design techniques is not found as a problem (Andersson and Runeson 2002). Research
on the ET approach in industry includes a case study (Itkonen and Rautiainen 2005) and
observational studies on testing practices (Itkonen et al. 2009) and on the role of knowledge
(Itkonen et al. 2013), but to our knowledge the effectiveness and efficiency of ET has not
been researched in any industrial context.

Even though the efficiency and applicability of ET lacks reliable research, there are
anecdotal reports listing many benefits of this type of testing. The claimed benefits, as
summarized in Itkonen and Rautiainen (2005), include effectiveness, the ability to utilize
tester’s creativity and non-reliance on documentation (van Veenendaal et al. 2002; Bach
2000; Kaner et al. 2008; Lyndsay and van Eeden 2003; Våga and Amland 2002).

3 Methodology

This section describes the methodology followed in the study. First, the research goals along
with research questions and hypotheses are described. After that a detailed description of
the experimental design is presented.

3.1 Goal Definition

The experiment was motivated by a need to further validate the claimed benefits of using
ET. There are studies that report ET as being more efficient and effective in finding critical

Empir Software Eng

defects. As described in the previous section, it has been claimed that ET takes less effort
and utilizes the skill, knowledge and experience of the tester in a better way. However, more
empirical research and reliable results are needed in order to better understand the potential
benefits of the ET approach.

In this experiment we focus on the testing activity and its defect detection effective-
ness. The high-level research problem is to investigate if the traditional testing approach
with pre-design and documented test cases is beneficial or not in terms of defect detection
effectiveness. This is an important question, despite of the other potential benefits of test
documentation, because the rationale behind the traditional detailed test case documenta-
tion is to improve the defect detection capability (Goodenough and Gerhart 1975; Myers
et al. 1979).

According to Wohlin et al. (2000), a goal-definition template (identifying the object(s),
goal(s), quality focus and the perspective of the study) ensures that important aspects of an
experiment are defined before the planning and execution:

– Objects of study: The two testing approaches, i.e., ET and TCT.
– Purpose: To compare the two testing approaches in fixed length testing sessions in

terms of number of found defects, defect types, defect severity levels, defect detection
difficulty, and the number of false defect reports.

– Quality focus: Defect detection efficiency and the effectiveness of the two testing
approaches.

– Perspective: The experimental results are interpreted from a tester’s and a researcher’s
point of view.

– Context: The experiment is run with industry practitioners and students as subjects
performing functional testing at the system level.

In this context it might be worthwhile to clarify the words effectiveness and efficiency and
how these words are used in the context of this experiment. By effectiveness we mean the
fault finding performance of a technique, i.e., the number of faults a technique finds. If we
also add a measure of effort, i.e., the time it takes to find these faults, then we use the word
efficiency.

3.2 Research Questions and Hypotheses Formulation

Our main RQ was given in Section 1. In order to answer our main RQ, a number of sub-RQs
are proposed, along with their associated hypotheses:

RQ 1: How do the ET and TCT testing approaches compare with respect to the number
of defects detected in a given time?

Null Hypothesis H0.1: There is no difference in the number of detected defects between ET and TCT

approaches.

Alternate Hypothesis H1.1: There is a difference in the number of detected defects between ET and

TCT approaches.

RQ 2: How do the ET and TCT testing approaches compare with respect to defect
detection difficulty, types of identified defects and defect severity levels?

Null Hypothesis H0.2.1: There is no difference in the defect detection difficulty when using ET and

TCT approaches.

Alternate Hypothesis H1.2.1: There is a difference in the defect detection difficulty when using ET

and TCT approaches.

Empir Software Eng

Null Hypothesis H0.2.2: There is no difference in the type of defects detected using ET and TCT

approaches.

Alternate Hypothesis H1.2.2: There is a difference in the type of defects detected using ET and TCT

approaches.

Null Hypothesis H0.2.3: There is no difference in the severity of defects detected using ET and TCT

approaches.

Alternate Hypothesis H1.2.3: There is a difference in the severity of defects detected using ET and

TCT approaches.

RQ 3: How do the ET and TCT testing approaches compare in terms of number of false
defect reports?

Null Hypothesis H0.3: There is no difference in the number of false defect reports when using ET and

TCT testing approaches.

Alternate Hypothesis H1.3: There is a difference in the number of false defect reports when using ET

and TCT testing approaches.

To answer the research questions and to test our stated hypotheses, we used a controlled
experiment. In the experimental design we followed the recommendations for experimental
studies by Wohlin et al. (2000), Juristo and Moreno (2001) and Kitchenham et al. (2002).

3.3 Selection of Subjects

The subjects in our study were industry practitioners and students. There were three indus-
try partners, two located in Europe and one in Asia. The subjects were selected using a
convenience sampling based on accessibility. The subjects from the industry had experience
in working with software testing. Still, they were provided with material on the test case
design techniques. In academia, the students of an MSc course in software verification and
validation took part in the experiment. They learnt different test case design techniques in
the course. Moreover, the students were selected based on their performance, i.e., only stu-
dents performing well in their course assignments were selected. The assignments in the
course were marked according to a pre-designed template where a student got marks based
on a variety of learning criteria. The final marks on an assignment reflected the aggregate of
each of the individual criteria. Out of a total of 70 students, 46 were ultimately selected for
the experiment, i.e., top-65 %. This selection of top-65 % of the students was done before
the execution of the experiment, i.e., we did not gather any data from the bottom 35 % of
the students as they were excluded from the very start.

The total number of subjects who participated in this experiment was 70. Among them
there were a total of 24 participants from industry and 46 from academia. The subjects were
divided into two groups. The groups are referred to as the ET group and the TCT group,
based on the approach they used to test the feature set (experimental object). The approach
to be used by each of the two groups (either ET or TCT) was only disclosed to them once
they had started their sessions. There were a total of 35 participants in each of the two groups
for the four experimental iterations. (The division of subjects in experimental iterations and
groups is shown in Table 1).

Further, the following aspects were considered for people participating as subjects
(Wohlin et al. 2000).

– Obtain consent: To reduce the risk of invalid data and to enable the subjects to per-
form the experiment according to the objectives, the intention of the work and the
research objectives were explained to all subjects (through a meeting in the industry

Empir Software Eng

Table 1 The division of subjects
in experimental iterations and
groups

Iteration Type Total subjects ET TCT

1 Academia 46 23 23

2 Industrial 3 1 2

3 Industrial 8 4 4

4 Industrial 13 7 6

and a presentation to students). It was made clear how the results would be used and
published.

– Sensitive results: The subjects were assured that their performance in the experiment
would be kept confidential.

– Inducements: To increase motivation, extra course points were awarded to the students
participating in the experiment, but participation was not made compulsory. The indus-
try practitioners were motivated by the prospect of getting important feedback on the
performance of the two testing approaches.

To characterize the subjects, demographic data was collected in terms of experience in
software development and software testing. The demographic data of the subjects is given in
Table 2. On average, the industrial practitioners were more experienced in software devel-
opment and software testing than the students, which was expected. However, the students
were, on the other hand, knowledgeable in the use of various testing techniques that were
taught during the course software verification and validation.

3.4 Experiment Design

The experimental design of this study is based on one factor with two treatments. The
factor in our experiment is the testing approach while the treatments are ET and TCT.
There are two response variables of interest: defect detection efficiency and defect detection
effectiveness.

The experiment was comprised of two separate sessions, one each for the ET and TCT
group. In the testing session phase, the TCT group designed and executed the test cases for
the feature set. The subjects did not design any test cases before the testing session. The
rationale was to measure the efficiency in terms of time to complete all required activities.
At the start of the session, the TCT group was provided with a template, both for designing
the test cases and for reporting the defects. The ET group was instructed to log their session
activity as per their own understanding but in a readable format. Both groups were given
the same materials and information regarding the tested application and its features. Both

Table 2 Average experience of
subjects in software development
and software testing in number of
years

Subjects Experience (years) x̄

Students Software development 0.583

Software testing 0.291

Industrial practitioners Software development 2.954

Software testing 4.045

Empir Software Eng

groups were provided with the same jEdit user’s guide for finding the expected outputs.
The subjects in TCT group designed their test cases themselves, no existing test cases were
provided for them.

All subjects were instructed to apply the same detailed test design techniques: equiva-
lence partitioning, boundary value analysis and combination testing techniques. The same
techniques were applied for test case designing in TCT as well as for testing in ET. The
techniques were used industry and student subjects. This information was communicated to
them prior to the experiment.

Each session started with a 15-minute ‘session startup’ phase where the subjects were
introduced to the objective of the experiment and were given the guidelines on how to
conduct the experiment. The actual testing was done in a 90 min time-boxed session.3 The
defect reports and the test logs were then handed over for evaluation. The following artifacts
were provided in the testing session:

– Session instructions.
– A copy of the relevant chapters of the jEdit user’s guide.
– Defect reporting document (TCT only).
– Test case design document (TCT only).
– A test charter and logging document for ET.
– Test data files that are available in the test sessions:

– A small text file.
– GNU general public license text file.
– jEdit user’s guide as a text file.
– Ant build.xml file.
– Java source code files from jEdit.
– C++ source code files from WinMerge.4

The following artifacts were required to be submitted by the subjects:

– Defect reports in a text document.
– The test cases and the test log (TCT only).
– The filled ET logging document (ET only).
– Test case design document (TCT only).

The concept of tracking the test activity in sessions is taken from Bach’s approach of
session-based test management (SBTM) (Bach 2000). SBTM was introduced to better orga-
nize ET by generating orderly reports and keeping track of tester’s progress supported by a
tool. Testing is done in time-limited sessions with each session having a mission or charter.
The sessions are debriefed with the test lead accepting a session report and providing feed-
back. The session report is stored in a repository whereby a tool scans it for getting basic
metrics, like time spent on various test activities and testing progress over time in terms of
completed sessions.

3The 90 minutes session length was decided as suggested by Bach (2000) but is not a strict requirement (we
were constrained by the limited time available for the experiments from our industrial and academic subjects).
4The C++ source code files were given to the subjects as an example to see code formatting and indentation.
The purpose was to guide the subjects in detecting formatting and indentation defects.

Empir Software Eng

3.5 Instrumentation

The experimental object we used in this study was the same as used by Itkonen et al. (2007).
It is an open source text editor.5 Artificial faults were seeded in the application at the source
code level to make two variants and then recompiled. The variant that we used is referred to
as Feature Set-A in the experiment by Itkonen et al. (2007). This variant contained a total
of 25 seeded faults. The actual number of faults exceeds the number of seeded faults. The
choice to use a text editor was made because editors are familiar to the subjects without
requiring any training (Itkonen et al. 2007), and it represents a realistic application. In addi-
tion, being open source it was possible to seed faults in the code. The experimental object
was only available to the subjects once the functional testing phase was started.

In addition to the test object feature set, we used the following instrumentation, with
required modifications: user guide and instructions; test case design template (Appendix
A); defect report template (Appendix B); exploratory charter6 (Appendix C); and feature
set defect details.

The Feature Set-A was composed of first and second priority functions:

– First priority functions

– Working with files (User’s guide chapter 4)

• Creating new files.
• Opening files (excluding CZipped files).
• Saving files.
• Closing files and exiting jEdit.

– Editing text (User’s guide chapter 5)

• Moving the caret.
• Selecting text.

· Range selection.
· Rectangular selection.
· Multiple selection.

• Inserting and Deleting text.

– Second priority functions

– Editing text (User’s guide chapter 5)

• Working with words.

· What is a word?

• Working with lines.
• Working with paragraphs.
• Wrapping long lines.

· Soft wrap.
· Hard wrap.

5jEdit version 4.2
6The exploratory charter provided the subjects with high-level test guidelines.

Empir Software Eng

3.6 Operation

The user guide and the instructions for testing the application were provided to the subjects
one day before the experiment execution. The task of the subjects was to cover all function-
ality documented in the user’s guide concerning Feature Set-A. Each subject participated
only in one allocated session, i.e., either ET or TCT.

At the start of the testing session, subjects were provided with instructions. The instruc-
tions contained details on session arrangement and the focus of the testing session. The TCT
group received the template for test case design and reporting defects. The ET group got a
vague charter listing the functionality to be tested and an emphasis on testing from user’s
viewpoint. Both ET and TCT groups performed the test execution manually.

We executed a total of four experiment iterations, i.e., four instances of the experiment
conducted with different subjects under similar experimental setting. Three of these itera-
tions were done in industry (two in Europe and one in Asia) while one of the iterations were
done in academia. For each experiment iteration, the ET and TCT groups performed the
sessions at the same time (they were located in identical locations but in different rooms).

To provide an identical experimental environment, i.e., testing tools and operating system
(OS), each subject connected to a remote Windows XP image. The OS image was preloaded
with the experimental object in complete isolation from the Internet. To collect data from
this experiment, the logs and defect report forms were filled out by the subjects during the
testing session. After the data was collected, it was checked for correctness and the subjects
were consulted when necessary.

The experimental design of this study was similar to the earlier experiment by Itkonen
et al. (2007) and used the same software under test, including the same seeded and actual
faults. There are, however, three important differences in the experimental design between
the two experiments. First, this study employed only one test session per subject with the
purpose of reducing the learning effect of the subjects. We tried to avoid the learning effect
because we believed that we would measure the true effect of a particular treatment more
accurately. Each subject carried out the experiment one time only using their assigned test-
ing approach. Second, in this experiment the total time provided to both approaches was
the same, whereas in Itkonen et al.’s earlier experiment the test case design effort was not
part of the time-boxed testing sessions. Both approaches were allocated 90 minutes to carry
out all activities involved in their approach. This way we were, in addition, able to measure
the efficiency in terms of number of defects found in a given time. Third, the experimen-
tal settings were, of course, different. This experiment was executed both in industry and
academia, whereas Itkonen et al.’s study (Itkonen et al. 2007) used student subjects only.

4 Results and Analysis

This section presents the experimental results based on the statistical analysis of the data.

4.1 Defect Count

The defect count included all reported defects that the researchers were able to interpret,
understand and reproduce (i.e., true defects). A false defect (duplicate, non-reproducible,
non-understandable) was not included in the defect count. The details of false defects are
described in Section 4.3. The defect counts are summarized in Table 3. The table lists the
defect counts separately for both testing approaches.

Empir Software Eng

Table 3 Defect count data
summary Testing approach Defects found (Mean (x̄))

ET 8.342

TCT 1.828

The mean defect counts for the ET and TCT approaches is 8.342 and 1.828 respectively;
ET detected on average 6.514 more defects than TCT. The actual number of defects found
by the two approaches was 292 (ET) vs. 64 (TCT). The number of defects detected by
both groups were from a normal distribution (confirmed by using the Shapiro-Wilks test for
normality). Thus, the number of defects detected were compared using the t-test. Using the
two-tailed t-test, we obtained p = 1.159 × 10−10, hence, the defects found using the two
approaches were statistically different at α = 0.05. The effect size calculated using Cohen’s
d statistic also suggested practical significance, i.e., d = 2.065.7

For the number of defects detected in the given time, students found 172 true defects
when using ET with a median8 of 6. Practitioners found 120 true defects when using ET with
a median of 9. This shows that for the number of students and practitioners applying ET, the
practitioners found on average more defects than students. However, the difference is not
statistically significant (p = 0.07) when applying the Mann-Whitney U test at α = 0.05
(the data had a non-normal distribution). (We also used the non-parametric Vargha and
Delaney’s Â12 statistic to assess effect size. The statistic Â12 turned out to be 0.31 which is
a small effect size according to the guidelines of Vargha and Delaney (2000)).

Students, when applying TCT, found a total of 33 true defects with a median of 1.
Practitioners, on the other hand, found a total of 31 defects while applying TCT with a
median of 2.5. This shows that practitioners found, on average, more true defects than stu-
dents when using TCT. However, the difference is not statistically significant (p = 0.15,
Â12 = 0.35) when applying the Mann-Whitney U test at α = 0.05 (the data had a
non-normal distribution).

4.2 Detection Difficulty, Types and Severity

The defect reports were classified into three dimensions (Itkonen et al. 2007):

1. Detection difficulty.
2. Technical type.
3. Severity.

We used the same measure for defect detection difficulty as Itkonen et al. used in their ear-
lier experiment (Itkonen et al. 2007). The detection difficulty of a defect is defined by using
the failure-triggering fault interaction9 (FTFI) number. This number refers to the number of
conditions required to trigger a failure (Kuhn et al. 2004). The FTFI number is determined
by observing the failure occurrence and analyzing how many different inputs or actions are

7Cohen’s d shows the mean difference between the two groups in standard deviation units. The values for d
are interpreted differently for different research questions. However, we have followed a standard interpreta-
tion offered by Cohen (1988), where 0.8, 0.5 and 0.2 show large, moderate and small practical significances,
respectively.
8Median is a more close indication of true average than mean due to the presence of extreme values.
9FTFI number is somewhat ambiguously named in the original article, since the metric is not about fault
interactions, but interactions of inputs or conditions that trigger the failure.

Empir Software Eng

required in order to make the failure occur. For example, if triggering a failure requires the
tester to set one input in the system to a specific value and executing a specific command,
the FTFI number would be 2 (i.e., mode 2 defect). The detection difficulty of a defect in
this study is characterized into four levels of increasing difficulty:

– Mode 0: A defect is immediately visible to the tester.
– Mode 1: A defect requires a single input to cause a failure (single-mode defect).
– Mode 2: A defect requires a combination of two inputs to cause a failure.
– Mode 3: A defect requires a combination of three or more inputs to cause a failure.

To make testing more effective it is important to know which types of defects
could be found in the software under test, and the relative frequency with which these
defects have occurred in the past (Abran et al. 2004). IEEE standard 1044-2009 (IEEE
1044- 2009, 2010) classifies software defects but the standard only prescribes example
defect types such as interface, logic and syntax defects while recommending organizations
to define their own classifications; “the point is to establish a defect taxonomy that is mean-
ingful to the organization and the software engineers” (Abran et al. 2004). For the purpose
of this study, we have classified defects based on the externally visible symptoms, instead
of the (source code level) technical fault type as is common in existing classifications, see,
e.g., ODC (Chillarege et al. 1992). We believe that for comparing approaches for manual
testing defect symptoms form an important factor affecting defect detection. The defects
were classified into the following types based on the symptoms: performance, documenta-
tion, GUI, inconsistency, missing function, technical defect, usability and wrong function.
Table 4 shows the definition of each type of defect with examples. The defect severity indi-
cates the defect’s estimated impact on the end user, i.e., negligible, minor, normal, critical
or severe.

In all four modes of detection difficulty, ET found clearly more defects. The differ-
ence between the number of defects found in each difficulty level is, consequently, also
statistically significant at α = 0.05 using the t-test (p = 0.021, d = 2.91).

In the percentage distribution presented in Table 5 we can see the differences between
ET and TCT in terms of detection difficulty. The data shows that for the defects that ET
revealed, the proportion defects that were difficult to detect was higher. In the defects
revealed by TCT the proportion of the obvious and straightforward defects was higher.

For students applying ET, the four modes of defect detection difficulty were significantly
different using one-way analysis of variance (p = 4.5e − 7, α = 0.05).The effect size
calculated using eta-squared (η2) also suggested practical significance, i.e., η2=0.31.10 We
performed a multiple-comparisons test (Tuckey-Kramer, α = 0.05)11 to find out which
pairs of modes are significantly different. The results showed that mode 0 and 1 defects
were significantly different from mode 3 defects (Fig. 1a). In the percentage distribution
presented in Table 6 we can see the differences in the modes of defects detected by students
using ET. The data indicates that students detected a greater percentage of easier defects
(mode 0 and 1) as compared to difficult defects (mode 2 and 3).

10η2 is a commonly used effect size measure in analysis of variance and represents an estimate of the degree
of the association for the sample. We have followed the interpretation of Cohen (1988) for the significance
of η2 where 0.0099 constitutes a small effect, 0.0588 a medium effect and 0.1379 a large effect.
11The term mean rank is used in Tuckey-Kramer test for multiple comparisons. This test ranks the set of
means in ascending order to reduce possible comparisons to be tested, e.g., in the ranking of the means W >X
>Y >Z, if there is no difference between the two means that have the largest difference (W & Z), comparing
other means having smaller difference will be of no use as we will get the same conclusion.

Empir Software Eng

Table 4 Description of the types of defects with examples

Type Description Example

Documentation Defects in user manual Manual has wrong keyboard shortcut

for inverting the selection in the

selecting text chapter

GUI Defects in user interface, such as Uninformative error message when trying

undesirable behavior in text and to save in an access restricted folder

file selection, inappropriate error

messages and missing menus

Inconsistency Functions exhibiting incon- Opening a new empty buffer is not possible

sistent behavior when only one unmodified empty buffer exists

Missing function Defects due to missing functionality Shortcut problems with Finnish keyboard

and incompatibility issues and Autosave does not automatically find the

autosave file; prompting for recovery when jEdit

is launched after crash

Performance Defects resulting in reduced Character input stops after writing few

performance of the system characters fast

Technical defect Defects attributed to application While holding right arrow-key down an exception

crash, technical error message is thrown; Goto line crashes if large line

or runtime exception number is provided

Usability Defects resulting in undesirable Open dialog always opens to C: directory;

usability issues Select lines accept invalid input

without a warning message

Wrong function Defects resulting in incorrect An extra newline character is added at the end

functionality of the file while saving; if a file created in another

editor is opened the last character is missing

For practitioners applying ET, the four modes of defect detection difficulty were also
found to be significantly different using one-way analysis of variance (p = 1.8e− 4,
η2=0.36). The results of a multiple comparisons test (Tuckey-Kramer, α = 0.05) showed
that mode 0 defects were not significantly different from mode 3 defects while mode 1
defects were significantly different from mode 3 (Fig. 1b). In the percentage distribution
presented in Table 6 we can see a trend similar to when students applied ET, i.e., practition-
ers detected a greater percentage of easier defects (mode 0 and 1) as compared to difficult
defects (mode 2 and 3).

Table 5 Distribution of defects
concerning detection difficulty Mode ET TCT ET % TCT % Total

Mode 0 73 22 25 % 35 % 95

Mode 1 117 27 40 % 44 % 144

Mode 2 72 11 25 % 18 % 83

Mode 3 30 2 10 % 3 % 32

Total 292 62 100 % 100 % 354

Empir Software Eng

0 0.5 1 1.5 2 2.5 3 3.5

Mode 3

Mode 2

Mode 1

Mode 0

Mean rank

D
ef

ec
t d

et
ec

tio
n

di
ffi

cu
lty

(a) Multiple comparisons test for the di erent modes of
defects detected by students applying ET

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Mode 3

Mode 2

Mode 1

Mode 0

D
ef

ec
t d

et
ec

tio
n

di
ffi

cu
lty

Mean rank
(b) Multiple comparisons test for the di erent modes

of defects detected by practitioners applying ET

Fig. 1 Results of the multiple comparisons test for modes of defects detected by students and practitioners
using ET (The vertical dotted lines indicate differences in mean ranks of different modes of defects, i.e., in
Fig. 1a above, the vertical dotted lines indicate Mode 1 and 3 have mean ranks significantly different from
Mode 0)

We further applied the multivariate analysis of variance test for identifying any signif-
icant differences between students and practitioners for defect detection difficulty modes
when using ET. The results given by four different multivariate tests indicate that there is
no significant effect of the type of subjects (either students or practitioners) on the different
modes of defects identified in total (p-value for Pillai’s trace, Wilks’ lambda, Hotelling’s
trace, Roy’s largest root= 0.31, η2 = 0.14, α = 0.05).

For students applying TCT, the four modes of defect detection difficulty were signifi-
cantly different using one-way analysis of variance (p = 0.01, η2 = 0.12, α = 0.05). The
results of performing a multiple comparisons test (Tuckey-Kramer, α = 0.05) showed that
mode 0 and 2 defects were not significantly different from any other mode while mode 1 and
3 were found to be significantly different (Fig. 2a). The percentage distribution of different
modes of defects is presented in Table 7. It shows that no defect in mode 3 was detected by
students applying TCT while the majority of the defects found were comparatively easy to
find (mode 0 and 1).

For practitioners applying TCT, there were no significant differences found between
the different modes of defects detected using one-way analysis of variance (p = 0.15,
η2 = 0.11, α = 0.05). The percentage distribution of different modes of defects detected
by practitioners using TCT is given in Table 7. As was the case with students, practitioners
also did not find any defects in mode 3 while the majority of the defects found were easy
(mode 0 and 1).

We further applied the multivariate analysis of variance test for identifying any signif-
icant differences between students and practitioners for defect detection difficulty modes
of defects when using TCT. The results given by four different multivariate tests indicate

Table 6 Percentages of the
modes of defects detected by
students and practitioners
applying ET

Mode Students Practitioners Students % Practitioners %

Mode 0 46 27 26.74 % 22.69 %

Mode 1 68 48 39.53 % 40.34 %

Mode 2 39 31 22.67 % 26.05 %

Mode 3 19 13 11.04 % 10.92 %

Empir Software Eng

0.4 0.2 0 0.2 0.4 0.6 0.8 1

Mode 3

Mode 2

Mode 1

Mode 0

Mean rank

D
ef

ec
t d

et
ec

tio
n

di
ffi

cu
lty

(a) Multiple comparisons test for the di erent modes
of defects detected by students applying TCT

Fig. 2 Results of the multiple comparisons test for different modes of defects detected by students using
TCT. (The vertical dotted lines indicate differences in mean ranks of different modes of defects, i.e., in
Fig. 2a above, the vertical dotted lines indicate that mode 0 defects have mean rank significantly different
from none other)

that there is no significant effect of the type of subjects (either students or practitioners) on
the different modes of defects identified in total (p-value for Pillai’s trace, Wilks’ lambda,
Hotelling’s trace, Roy’s largest root = 0.27, η2 = 0.12, α = 0.05).

Table 8 show the categorization of the defects based on their technical type. The ET
approach revealed more defects in each defect type category in comparison to TCT (the
exception being the ‘documentation’ type where both approaches found equal number
of defects). Nevertheless, the differences are very high for the following types: missing
function, performance, technical defect, and wrong function. Using a t-test, the differ-
ence between the number of defects found per technical type for the two approaches is
statistically significant at α = 0.05 (p = 0.012, d = 2.26).

The percentage distribution presented in Table 8 indicate quite strongly that for defects
found with ET, the proportion of missing function, performance, and technical defects were
clearly higher. On the other hand, the proportions of GUI and usability defects as well as
wrong function types defects were higher in defects revealed by TCT.

The results of one-way analysis of variance (p = 7.8e− 16, η2 = 0.38) also showed
that students, when using ET, found significantly different technical types of defects. A
multiple comparisons test (Tuckey-Kramer, α = 0.05) (Fig. 3a) showed that the defects of
the type: documentation, GUI, inconsistency and usability were significantly different from

Table 7 Percentages of the
different modes of defects
detected by students and
practitioners applying TCT

Mode Students Practitioners Students % Practitioners %

Mode 0 7 11 25.92 % 45.83 %

Mode 1 15 7 55.55 % 29.17 %

Mode 2 5 6 18.52 % 25 %

Mode 3 0 0 0.00 % 0.00 %

Empir Software Eng

Table 8 Distribution of defects
regarding technical type Type ET TCT ET % TCT % Total

Documentation 5 5 1.71 % 8.06 % 10

GUI 19 8 6.51 % 12.90 % 27

Inconsistency 8 4 2.74% 6.45 % 12

Missing function 65 5 22.26 % 8.06 % 70

Performance 62 5 21.23 % 8.06 % 67

Technical defect 44 2 15.07 % 3.22 % 46

Usability 17 11 5.82 % 17.74 % 28

Wrong function 72 22 24.66 % 35.48 % 94

Total 292 62 100 % 100 % 354

the defects of the type: missing function, performance and wrong function. The percent-
age distribution presented in Table 9 show clearly that students applying ET found greater
proportions of missing function, performance and wrong function defects as compared to
remaining types of defects.

The practitioners also found significantly different type of defects when using ET as
shown by the results of one-way analysis of variance (p = 4.1e − 10, η2=0.47). A multiple
comparisons test (Tuckey-Kramer, α = 0.05) (Fig. 3b) showed similar results to students
using ET, i.e., the defects of the type: documentation, GUI, inconsistency and usability
were significantly different from the defects of the type: missing function, performance
and wrong function. The percentage distribution of type of defects found by practitioners
using ET (Table 9) show a similar pattern to when students applied ET, i.e., practitioners
found greater proportions of missing function, performance and wrong function defects as
compared to remaining types of defects.

We further applied the multivariate analysis of variance test for identifying any signifi-
cant differences between students and practitioners for type of defects when using ET. The
results given by four different multivariate tests indicate that there is no significant effect of
the type of subjects (either students or practitioners) on the different type of defects identi-
fied in total (p-value for Pillai’s trace, Wilks’ lambda, Hotelling’s trace, Roy’s largest root
= 0.58, η2 = 0.20, α = 0.05).

-0.5 0 0.5 1 1.5 2 2.5

Wrong function
Usability

Technical defect
Performance

Missing function
Inconsistency

GUI
Documentation

D
ef

ec
t t

yp
e

Mean rank

(a) Multiple comparisons test for the di erent types of de-
fects detected by students applying ET

-0.5 0 0.5 1 1.5 2 2.5 3

Wrong function

Usability

Technical defect

Performance

Missing function

Inconsistency

GUI

Documentation

D
ef

ec
t t

yp
e

Mean rank

(b) Multiple comparisons test for the di erent types of de-
fects detected by practitioners applying ET

Fig. 3 Results of the multiple comparisons test for types of defects detected by students and practitioners
using ET (The vertical dotted lines indicate differences in mean ranks of different types of defects, i.e., in
Fig. 3a above, the vertical dotted lines indicate that documentation has mean rank significantly different from
missing function, performance, technical defect and wrong function)

Empir Software Eng

Table 9 Percentages of the type
of defects detected by students
and practitioners applying ET

Type Students Practitioners Students % Practitioners %

Documentation 2 3 1.15 % 2.54 %

GUI 12 7 6.90 % 5.93 %

Inconsistency 4 4 2.30 % 3.39 %

Missing function 39 26 22.41 % 22.03 %

Performance 38 24 21.84 % 20.34 %

Technical defect 26 18 14.94 % 15.25 %

Usability 10 7 5.75 % 5.93 %

Wrong function 43 29 24.71 % 24.58 %

The results of one-way analysis of variance (p = 2.1e− 4, η2 = 0.14, α = 0.05) also
showed that students, when using TCT, found significantly different types of defects. A
multiple comparisons test (Tuckey-Kramer, α = 0.05) (Fig. 4a) showed that the defects of
type wrong function were significantly different than all other types of defects (which did
not differ significantly among each other). The percentage distribution shown in Table 10
shows that the defects of the type wrong function were detected more than any other types
of defects.

The practitioners applying TCT, on the other hand, did not find significantly different
types of defects as given by the results of one-way analysis of variance (p = 0.05, η2 =
0.14, α = 0.05). The percentage distribution of types of defects are shown in Table 10. As
with students using TCT, practitioners also found more wrong function type defects than
other types.

We further applied the multivariate analysis of variance test for identifying any signifi-
cant differences between students and practitioners for different types of defects when using
TCT. The results given by four different multivariate tests indicate that there is no signifi-
cant effect of the type of subjects (either students or practitioners) on the different types of

0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Wrong function

Usability

Technical defect

Performance

Missing function

Inconsistency

GUI

Documentation

Mean rank

D
ef

ec
t t

yp
e

(a) Multiple comparisons test for the di erent types of de-
fects detected by students applying TCT

Fig. 4 Results of the multiple comparisons test for different types of defects detected by students using TCT.
(The vertical dotted lines indicate differences in mean ranks of different types of defects, i.e., in Fig 4a above,
the vertical dotted lines indicate that defects of type documentation have mean rank significantly different
from defects of type wrong function)

Empir Software Eng

Table 10 Percentages of the
different types of defects
detected by students and
practitioners applying TCT

Type Students Practitioners Students % Practitioners %

Documentation 0 0 0.00 % 0.00 %

GUI 1 1 3.70 % 4.17 %

Inconsistency 4 0 14.81 % 0.00 %

Missing function 3 2 11.11 % 8.33 %

Performance 4 1 14.81 % 4.17 %

Technical defect 0 2 0.00 % 8.33 %

Usability 3 8 11.11 % 33.33 %

Wrong function 12 10 44.44 % 41.67 %

defects identified in total (p-value for Pillai’s trace, Wilks’ lambda, Hotelling’s trace, Roy’s
largest root = 0.08, η2 = 0.35, α = 0.05).

Table 11 shows the categorization of the defects based on their severities. We can see that
ET found more defects in all severity classes. The difference is also statistically significant
using a t-test at α = 0.05 (p = 0.048, d = 1.84).

The percentage proportions in Table 11 show that the proportion of severe and critical
defects is higher when ET was employed and the proportion of ‘negligible’ defects was
greater with TCT.

Comparing the severity levels of defects found by students using ET show that they
found significantly different severity levels of defects (one-way analysis of variance, p =
3.2e− 14, η2 = 0.46). The results of a multiple comparisons test (Tuckey-Kramer, α=0.05)
showed that severe and normal defects were significantly different from negligible, minor
and critical defects (Fig. 5a). This is also evident from the percentage distribution of severity
levels of defects found by students using ET (Table 12). The students clearly found greater
proportions of normal and severe defects in comparison to other severity levels.

The practitioners also found defects of significantly different severity levels using ET
(one-way analysis of variance, p = 7.5e − 6, η2 = 0.40). A multiple comparisons test
(Tuckey-Kramer, α = 0.05) (Fig. 5b) showed results similar to when students applied
ET, i.e., severe and normal defects were significantly different from negligible and critical
defects. The percentage distribution of severity levels of defects (Table 12) also show that
practitioners found more normal and severe defects in comparison to remaining severity
levels of defects.

We further applied the multivariate analysis of variance test for identifying any signifi-
cant differences between students and practitioners for severity levels of defects when using
ET. The results given by four different multivariate tests indicate that there is no significant

Table 11 Severity distribution
of defects Severity ET TCT ET % TCT % Total

Negligible 13 9 4.45 % 14.52 % 22

Minor 49 12 16.78 % 19.35 % 61

Normal 99 25 33.90 % 40.32 % 124

Severe 108 14 36.99 % 22.58 % 122

Critical 23 2 7.88 % 3.22 % 25

Total 292 62 100 % 100 % 354

Empir Software Eng

0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Severe

Critical

Normal

Minor

Negligible

S
ev

er
ity

 le
ve

l o
f d

ef
ec

ts

Mean rank
(a) Multiple comparisons test for the di erent severity

levels of defects detected by students applying ET

0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Severe

Critical

Normal

Minor

Negligible

S
ev

er
ity

 le
ve

l o
f d

ef
ec

ts

Mean rank
(b) Multiple comparisons test for the di erent severity
levels of defects detected by practitioners applying ET

Fig. 5 Results of the multiple comparisons test for different severity levels of defects detected by students
and practitioners using ET (The vertical dotted lines indicate differences in mean ranks of different severity
levels of defects, i.e., in Fig 5a above, the vertical dotted lines indicate that negligible defects have mean rank
significantly different from normal and severe defects)

effect of the type of subjects (either students or practitioners) on the different severity lev-
els of defects identified in total (p-value for Pillai’s trace, Wilks’ lambda, Hotelling’s trace,
Roy’s largest root = 0.14, η2 = 0.24, α = 0.05).

The students using TCT also found significantly different severity levels of defects
as indicated by a one-way analysis of variance (p = 0.007, η2 = 0.12, α = 0.05).
The multiple comparisons test (Tuckey-Kramer, α=0.05) (Fig. 6a) showed that negligi-
ble, minor and severe severity levels of defects were not different, while normal and
critical severity levels were significantly different. The percentage distribution of the sever-
ity levels of defects found by students using TCT (Table 13) show that most of the
defects found were of normal severity level while no defect of severity level critical was
found.

The practitioners when using TCT, also found significantly different severity levels of
defects, as given by one-way analysis of variance (p = 0.01, η2 = 0.21, α = 0.05). The
results of a multiple comparisons test (Tuckey-Kramer, α = 0.05) (Fig. 6b) indicate that
normal defects were significantly different from negligible and critical defects. Minor and
severe defects did not differ significantly from other severity level of defects. The results
are somewhat similar to when students applied TCT. The percentage distribution of severity
levels of defects found by practitioners is given in Table 13. Similar to when students per-
formed TCT, no critical defects are found by practitioners while normal defects were found
more than any other severity level of defects.

We further applied the multivariate analysis of variance test for identifying any signif-
icant differences between students and practitioners for different severity levels of defects

Table 12 Percentages of the
severity level of defects detected
by students and practitioners
applying ET

Type Students Practitioners Students % Practitioners %

Negligible 7 6 4.07 % 5.00 %

Minor 28 21 16.28 % 17.50 %

Normal 59 40 34.30 % 33.33 %

Critical 8 15 4.65 % 12.50 %

Severe 70 38 40.70 % 31.67 %

Empir Software Eng

0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Severe

Critical

Normal

Minor

Negligible

Mean rank

S
ev

er
ity

 le
ve

l o
f d

ef
ec

ts

(a) Multiple comparisons test for the severity levels of
defects detected by students applying TCT

0.5 0 0.5 1 1.5 2

Severe

Critical

Normal

Minor

Negligible

Mean rank

S
ev

er
ity

 le
ve

l o
f d

ef
ec

ts

(b) Multiple comparisons test for the severity levels of
defects detected by practitioners applying TCT

Fig. 6 Results of the multiple comparisons test for severity levels of defects detected by students and practi-
tioners using TCT. (The vertical dotted lines indicate differences in mean ranks of different types of defects,
i.e., in Fig 6a above, the vertical dotted lines indicate that defects of negligible severity level have mean rank
significantly different from no other severity level)

when using TCT. The results given by four different multivariate tests indicate that there is
no significant effect of the type of subjects (either students or practitioners) on the differ-
ent severity levels of defects identified in total (p-value for Pillai’s trace, Wilks’ lambda,
Hotelling’s trace, Roy’s largest root = 0.14, η2 = 0.20, α = 0.05).

4.3 False Defect Reports

We consider a reported defect as false if it is either: a duplicate, non-existing, or the report
cannot be understood. A defect report was judged as false by the researchers if it clearly
reported the same defect that had been already reported by the same subject in the same test
session; it was not an existing defect in the tested software (could not be reproduced); or it
was impossible for the researchers to understand the defect report. The actual false defect
counts for ET and TCT were 27 and 44, respectively. The averages were x̄ET = 0.771 and
x̄T CT = 1.257.

On average, TCT produced 0.486 more false defect reports than ET. However, the differ-
ence is not statistically significant (p = 0.522) when applying the Mann-Whitney U test at
α = 0.05 (the data had a non-normal distribution). We also used the non-parametric Vargha

Table 13 Percentages of the
severity levels of defects detected
by students and practitioners
applying TCT

Severity level Students Practitioners Students % Practitioners %

Negligible 8 1 29.63 % 4.17 %

Minor 3 4 11.11 % 16.67 %

Normal 11 14 40.74 % 58.33 %

Critical 0 0 0.00 % 0.00 %

Severe 5 5 18.52 % 20.83 %

Empir Software Eng

and Delaney’s Â12 statistic to assess effect size. The statistic Â12 turned out to be 0.463
which is a small effect size according to the guidelines of Vargha and Delaney.12

Students applying ET reported 35 false defects with the median number of false defects
being 0. On the other hand, the practitioners applying ET reported 9 false defect reports with
the median number of false defects also being 0. The statistics indicate that on average both
students and practitioners found a similar number of false defects. This is also confirmed
by Mann-Whitney U test (the data had a non-normal distribution) at α = 0.05 (p = 0.98,
Â12 = 0.50) which indicates non-significant differences in the median number of false
defect reports submitted by students and practitioners when applying ET.

Students applying TCT reported 37 false defects with the median number of false defects
being 0. On the other hand, the practitioners applying TCT reported 7 false defect reports
with the median number of false defects again being 0. The statistics indicate that on average
both students and practitioners found a similar number of false defects when applying TCT.
This is also confirmed by Mann-Whitney U test (the data had a non-normal distribution) at
α = 0.05 (p = 0.55, Â12 = 0.55) which indicates non-significant differences in the median
number of false defect reports submitted by students and practitioners when applying ET.

5 Discussion

This section answers the stated research questions and discusses the stated hypotheses.

5.1 RQ 1: How do the ET and TCT Testing Approaches Compare with Respect
to the Number of Defects Detected in a Given Time?

In this experiment subjects found significantly more defects when using ET. Hence, we
claim, it allows us to reject the null hypothesis: H0.1. This result is different from the study
by Itkonen et al. (2007) where ET revealed more defects, but the difference was not statisti-
cally significant. On the other hand, the total effort of the TCT approach in their experiment
was considerably higher. One plausible explanation for this is the difference in the exper-
imental design. In this experiment the test case design effort was included in the testing
sessions comparing identical total testing effort, whereas in the earlier experiment by Itko-
nen et al. the significant test case pre-design effort was not part of the testing sessions,
comparing identical test execution effort. Considering this difference, our results, where ET
shows a significantly higher defect detection efficiency, is in line with the earlier results by
Itkonen et al. (2007).

The answer to RQ 1 provides us with an indication that ET should be more efficient in
finding defects in a given time. This means that documentation of test cases is not always
critical for identifying defects in testing, especially if the available time for testing is short.
Thus, our experiment shows that ET is efficient when it comes to time utilization to pro-
duce more results with minimum levels of documentation (see Sections 3.4 and 3.6 for a
more detailed description of type of documentation used in this experiment). It is important
to note that this comparison focuses on the testing approach, meaning that we got superior
effectiveness and efficiency by applying the ET approach to the same basic testing tech-
niques as in the TCT approach. We also analyzed the level of documentation done for ET

12Vargha and Delaney suggest that the Â12 statistic of 0.56, 0.64 and 0.71 represent small, medium and
large effect sizes respectively (Vargha and Delaney 2000).

Empir Software Eng

and TCT by subjects. The subjects performing ET provided on average 40 lines of text
and screenshots as compared to on average 50 lines of text and screenshots for TCT. The
documentation provided by subjects performing ET included brief test objective, steps to
reproduce the identified defect and the screenshot of error message received. The subjects
performing TCT documented all their test cases before test execution with steps to perform
a test case with expected results. Similar to the ET group, they also provided the screenshot
of error message received.

Our data in this study does not allow more detailed analysis of the reasons for the
efficiency difference. One hypothesis could be that the achieved coverage explains the
difference, meaning that in ET testers are able to cover more functionality by focusing
directly on testing without the separate design phase. Other explaining factor could be cog-
nitive effects of following a detailed plan. These aspects are important candidates for future
studies.

5.2 RQ 2: How do the ET and TCT Testing Approaches Compare with Respect to Defect
Detection Difficulty, Types of Identified Defects and Defect Severity Levels?

The experimental results showed that ET found more defects in each of the four modes of
defect detection difficulty. Moreover the difference in the number of defects found in each
of the modes, by the two approaches, was found to be statistically significant. Therefore,
we are able to reject the null hypothesis: H0.2.1. This result strongly indicates that ET is
able to find a greater number of defects regardless of their detection difficulty levels. Even
more important is the finding that the distribution of found defects, with respect to ET,
showed higher percentages for mode 2 and 3 (more complicated to reveal). Based on this
data ET is more effective at revealing defects that are difficult to find and TCT, in addition
to revealing fewer defects, also reveals more straightforward ones. This indicates that it is
challenging for both students and practitioners to design good test cases that would actually
cover anything but the most simple interactions and combinations of features, while, when
using ET, the subjects are able to more effectively test also the more complicated situations.

For detection difficulty of defects, although the different modes of detection difficulty
differed within students and practitioners when applying ET, between students and practi-
tioners there were no significant differences found. When TCT was used, there were again
no significant differences found between students and practitioners for different modes of
defect detection difficulty. There was however a trend observed: both students and prac-
titioners, whether applying ET or TCT, detected a greater number of easier defects as
compared to difficult defects.

In terms of the type of defects, ET found, again, a higher number of defects in each of
the categories in comparison to TCT (exception being ‘documentation’). The differences
were found to be statistically significant, therefore the null hypothesis, H0.2.2, is rejected.
When the distributions of defects regarding type are compared, an interesting finding is that
TCT revealed a higher percentage of GUI and usability defects. One would expect that ET
reveals more of these often quite visible GUI level defects (and usability defects), since
the documented test cases typically focus on functional features rather than on GUI level
features.

For the different types of defects, there were significant differences within students and
practitioners when applying ET, however no significant differences were found between the
two groups. A trend observed was that, when applying ET, both students and practition-
ers found greater proportions of missing function, performance and wrong function defects

Empir Software Eng

as compared to remaining types of defects. When TCT was used, there were again no sig-
nificant differences found between students and practitioners for different types of defects,
however a trend common in both subject groups was that more “wrong function” defects
were identified than any other type.

In terms of the severity of defects, the actual numbers found by ET are greater than TCT
for each of the severity levels and the differences are also statistically significant. We are
therefore able to reject the null hypothesis: H0.2.3. Considering the distribution of defects,
our results show clear differences between the two approaches. The results indicate that ET
seems to reveal more severe and critical defects and the TCT approach more normal and
negligible level defects.

For the severity level of defects, there were significant differences within students and
practitioners when applying ET, however no significant differences were found between
the two subject groups. A trend observed was that, when applying ET, both students and
practitioners found greater proportions of normal and severe defects compared to other
severity levels. When TCT was used, there were significant differences found within stu-
dents and practitioners, however between groups there were no significant differences. A
trend observed was that more normal severity level defects were identified by the two groups
of subjects when TCT was applied.

The answer to RQ 2 is that in this experiment ET was more effective in finding defects
that are difficult to reveal and potentially also effective in finding more critical defects than
TCT. The TCT approach led testers to find more straightforward defects as well as, to a
certain extent, GUI and usability related defects. In addition, TCT revealed proportionally
more intermediate and negligible severity level defects. This could be explained by the fact
that test cases were written and executed in a short time and that the subjects were not
able to concentrate enough on some of the potentially critical functionality to test. On the
other hand, testers did design and execute the tests in parallel when using ET and, hence,
ET might have enabled the testers to use their own creativity, to a higher extent, to detect
more defects. Our results support the claimed benefits of ET. For defect detection difficulty,
technical types, and severity of defects, the differences are higher than reported in the study
by Itkonen et al. (2007).

5.3 RQ 3: How do the ET and TCT Testing Approaches Compare in Terms of Number
of False Defect Reports?

Our experimental results show that testers reported more false defect reports using the TCT
approach. The difference in comparison to ET is smaller than what was reported by Itkonen
et al. (2007). This result, even though not statistically significant, might indicate that there
could be some aspects in the use of detailed test cases that affect the testers’ work negatively.
One explanation can be that when using test cases testers focus on the single test and do not
consider the behavior of the system more comprehensively, which might lead to duplicate
and incorrect reports. This, in one way, could indicate that ET allows a better understanding
of how a system works and a better knowledge of the expected outcomes. Based on the data,
however, we are not able to reject H0.3.

Our experimental results also confirm non-significant differences in the number of false
defect reports submitted by the two subject groups, when applying either ET or TCT.

In summary the experimental results show that there are no significant differences
between students and practitioners in terms of efficiency and effectiveness when performing
ET and TCT. The similar numbers for efficiency and effectiveness for students and practi-
tioners might seem a surprising result. However, one explaining factor could be the similar

Empir Software Eng

amount of domain knowledge that has been identified as an important factor in software
testing (Itkonen et al. 2013; Beer and Ramler 2008). In this experiment the target of testing
was a generic text editor application and it can be assumed that both students and profes-
sionals possessed a comparable level of application domain knowledge. Also, the students
selected for the experiment were highly motivated to perform well in the experiment as they
were selected based on their prior performance in the course assignments (representing top
65 %). It has also been found in certain software engineering tasks that students have a good
understanding and may work well as subjects in empirical studies (Svahnberg et al. 2008).
There is a possibility that if practitioners were given more time (for both ET and TCT), they
might have detected more defects by utilizing their experience. However, the design of this
study does not allow us to quantify the impact of variation in testing time on how practition-
ers are utilizing their experience when testing. There can be another argument with respect
to ET being a non-repeatable process, if exact repeatability is required for regression testing.
We mentioned in Section 1 that ET is perhaps not an ideal technique if precise repeatability
for regression testing is required. We do not have the empirical evidence to confirm or refute
this since this experiment answers different research questions. The proponents of ET claim
that ET actually adds intelligent variation in the regression testing suite by methodically
considering choices in input selection, data usage, and environmental conditions (Whittaker
2010): “Testers must know what testing has already occurred and understand that reusing
the same tired techniques will be of little bug-finding value. This calls for intelligent vari-
ation of testing goals and concerns”. This claim, as we have discussed, awaits empirical
corroboration.

One more argument with respect to ET’s effectiveness is the difficulty in finding the
actual outcome of a test case, when there are time-pressures or when referring to detailed
documentation (e.g., the user guide in this paper) is not practical. This might be a factor
in the number of false defect reports submitted by subjects performing ET, but we did not
perform any such analysis to confirm or refute this possibility.

6 Validity Threats

Despite our best efforts to obtain valid and reliable results, we nevertheless, were restricted
by experimental limitations. This section discusses the most serious threats to the validity
of this experiment.

Internal Validity Internal validity with respect to comparing testing techniques means that
the comparison should be unbiased.

The defect detection capability of a testing technique is largely dependent on many
factors: the type of software under test (SUT), the profile of defects present in the SUT
including types, probability of detection, and severity of the defects, and the training and
skills of testers (Briand 2007). In our comparison of the two testing approaches the SUT
was the same for both approaches, we did take into account the types of defects identi-
fied and the corresponding severity levels. However, we did not take into account a defect’s
probability of detection due to the expected variation in its values caused by inherent sub-
jectiveness in its calculation. The industry participants in our experiment were experienced
professionals. Therefore, it is expected that they were able to use their intuition and under-
standing of the system, to a higher degree. The student participants were selected based on
their scores in assignments (representing top 65 %) and, hence, were expected to have per-
formed according to their ability. We did not select the bottom 35 % students as subjects as

Empir Software Eng

there was a risk of their lack of knowledge in functional testing to be confounded with the
end results. The bottom 35 % students were also expected to lack motivation in performing
the experiment seriously, an important factor in making the results of an experiment more
trustworthy and interesting (Höst et al. 2005). The lack of knowledge in functional testing
and low motivation would also limit their ability to ‘continuous learning’, a concept that ET
advocates. The cut-off choice for selecting student subjects (65 %) can obviously change
in a different context; it was just a better choice in our case given the performance of stu-
dents. In addition, the application under test was a text editor that is a sufficiently familiar
domain for both software development professionals and students. The TCT group did not
design any test cases before the beginning of the testing session. Consequently, they were
expected to have less time executing test cases in comparison with the corresponding ET
group. We acknowledge that ideally there should have been more time for the experimental
testing sessions but it is challenging to commit long hours from industry profession-
als and, furthermore, in an experimental setting like this, one always risks introducing
fatigue.

Conclusion Validity Conclusion validity is concerned with the relationship between the
treatment and the outcome. It refers to using statistical hypothesis testing with a given sig-
nificance (Wohlin et al. 2000). In our case, the statistical tests were done at α = 0.05. It is
difficult to provide arguments for a predetermined significance level for hypothesis testing
(Arisholm et al. 2007) but α = 0.5 is commonly used (Juristo and Moreno 2001). We did
not do a power analysis that could have given us an indication of a more appropriate α-level.

Throughout the statistical hypotheses testing, parametric tests were preferred over non-
parametric tests provided that the data satisfied the underlying assumptions of each test
(since the power efficiency of non-parametric tests is considered to be lower). If the assump-
tions of a certain parametric test were violated, we used a non-parametric counterpart of
that test.

Experiments with humans usually have more variance, and the individual knowledge and
skills of the subjects affects the outcome. It is important that in this experiment the knowl-
edge and skill levels for both ET and TCT were similar. While one can claim that ET has
a larger variance than other techniques, this is not known until we perform further studies.
It is, however, likely that ET outcomes depend on competency and experience of testers.
This is also acknowledged in Section 1: It is believed that ET is largely dependent on the
skills, experience and intuition of the tester. That is to say, a tester with little or no testing
experience, will need more time to learn the new software and to comply with the test pro-
cess. This is in contrast with an experienced tester who might outperform the inexperienced
tester in terms of ET efficiency and effectiveness. This is an inherent limitation while exper-
imenting with ET. This threat can be minimized by a careful selection of human subjects.
We believe that our selection of experienced industry professionals and high-performing
students helped us reduce this threat. With regards to the replication of our experiment, an
exact replication is infeasible, as is the case with every other software engineering experi-
ment having human subjects (Brooks et al. 2008), since variation in subject population (and
hence the experience) and in contextual factors cannot be entirely eliminated. Thus what we
recommend is a theoretical replication (Lung et al. 2008) of our experiment with a differ-
ent target population and testing a variant of the original hypothesis, e.g., to investigate the
impact of tester experience and domain knowledge on ET outcome. While worthwhile, our
experiment is not designed to answer this question. The authors would like to invite future
replications of this experiment and are happy to extend all the support for doing that.

Empir Software Eng

Construct Validity Construct validity refers to generalizing the experimental results to the
concept behind the experiment (Wohlin et al. 2000). The two testing approaches were com-
pared using two constructs: efficiency and effectiveness. The validity and reliability of these
constructs are dependent on two factors. First, an identical test suite size for two testing
techniques may not translate into the same testing cost (Briand 2007). However, this is more
true when experimenting with different testing techniques (for example, random testing vs.
condition testing). In this study, both groups were instructed to use equivalence partition-
ing, boundary value analysis and combination testing techniques. The two groups had the
freedom to apply any of these techniques for defect detection during the testing session.

The second influencing factor for construct validity in this study is the use of fault
seeding. Fault seeding has been used by a number of empirical studies in software testing
(Graves et al. 2001; Hutchins et al. 1994; Weyuker 1993). The problem with fault seeding
is the potential bias when seeding faults for the purpose of assessing a technique (Briand
2007). However, we claim that this bias is somewhat mitigated in this study by systemat-
ically seeding a wide variety of faults. Moreover, the actual number of faults in the SUT
were greater than the seeded faults and, hence, we can claim that we had a balance between
actual and seeded faults and, thus, reaching our goal to have a high variance in the type of
faults.

The third influencing factor for construct validity in this study is the use of a single Java
application as a SUT, which is related to the mono-operation bias (Wohlin et al. 2000), a
threat to construct validity. Using only a single artifact might cause the studied construct
to be under-represented. But the choice of jEdit as a test object has some merits, especially
considering the current state of experiments in software engineering. Sjøberg et al. (2005)
conducted a survey of controlled experiments in software engineering. They report that
75 % of the surveyed experiments involved applications that were either constructed for
the purpose of the experiment or were parts of student projects. This is not the case with
jEdit, which is a realistic application (for mature programmers) with its homepage13 stating
hundreds of persons-years of development behind it. Moreover Sjøberg et al. (2005) finds
that there is no open-source application used in the surveyed experiments while jEdit is an
open-source application. With respect to the size of the materials presented to the subjects,
the survey (Sjøberg et al. 2005) states that the testing tasks reported materials in the range
of 25 to 2000 lines of code. Our test object is well above this range, with more than 80,000
LoC.

We hope that later experiments on ET can extend the use of test objects beyond our
experiment. We sincerely believe that to build an empirical body of knowledge around test
techniques, it is important to conduct a number of experiments since, unfortunately, there
is no one single perfect study. Basili et al. (1999) puts it perfectly: “[...] experimental con-
straints in software engineering research make it very difficult, even impossible, to design
a perfect single study. In order to rule out the threats to validity, it is more realistic to
rely on the parsimony concept rather than being frustrated because of trying to completely
remove all threats. This appeal to parsimony is based on the assumption that the evidence
for an experimental effect is more credible if that effect can be observed in numerous and
independent experiments each with different threats to validity”.

External Validity External validity refers to the ability of being able to generalize the
experimental results to different contexts, i.e., in industrial practice (Wohlin et al. 2000).

13http://www.jedit.org/

http://www.jedit.org/

Empir Software Eng

We conducted a total of four iterations of the experiment, three of which were done in indus-
trial settings. This gives confidence that the results could be generalizable to professional
testers. However, the testing sessions in this experiment were short and available time for
testing was strictly limited. The SUT in this experiment was also small compared to indus-
trial software systems. It is possible that the experimental results would not be generalizable
to larger SUTs and bigger testing tasks. We believe that the results generalize to contexts
where available time for a testing task is strictly limited, as in industrial context. We argue
that for large and complex applications ET would probably be more laborious because
analyzing the correct behavior would be more difficult. But the test case design would
also require more effort in that context (i.e., transferring that knowledge into documented
oracles). Our experiment is but a first step in starting to analyze these things.

The removal of bottom 35 % of the students also helped us avoid the external valid-
ity threat of interaction of selection and treatment (Wohlin et al. 2000), i.e., this subject
population would not have represented the population we want to generalize to.

The application domain was rather simple and easy to grasp for our subjects. This
improved the validity of our results in terms of the effects of variations in the domain
knowledge between the subjects. The relatively simple, but realistic, domain was well suited
for applying personal knowledge and experience as a test oracle. Our results from this
domain do not allow making any statements of the effects of highly complicated application
domains to the relative effectiveness or efficiency of the two studied testing approaches.

7 Conclusions and Future Work

In this study, we executed a total of four experiment iterations (one in academia and three in
industry) to compare the efficiency and effectiveness of exploratory testing (ET) in compar-
ison with test case based testing (TCT). Efficiency was measured in terms of total number
of defects identified using the two approaches (during 90 minutes), while effectiveness was
measured in terms of defect detection difficulty, defects’ technical type, severity levels and
number of false defect reports. Our experimental data shows that ET was more efficient
than TCT in finding more defects in a given time. ET was, also, found to be more effec-
tive than TCT in terms of defect detection difficulty, technical types of defects identified
and their severity levels; however, there were no statistically significant differences between
the two approaches in terms of the number of false defect reports. The experimental data
also showed that in terms of type of subject groups, there are no differences with respect to
efficiency and effectiveness for both ET and TCT.

There are several limitations of this study (as given in Section 6). In particular, the test-
ing sessions were time-limited and a simple text editor was used as the SUT. We also did
not investigate the role of experience as a potential factor in detecting defects. We also
acknowledge that documenting detailed test cases in TCT is not a waste but, as the results of
this study show, more test cases is not always directly proportional to total defects detected.
Hence, one could claim that it is more productive to spend time testing and finding defects
rather than documenting the tests in detail.

Some interesting future research can be undertaken as a result of this study:

– Empirically investigating ET’s performance in terms of feature coverage (including
time and effort involved).

– Comparing ET’s performance with automated testing and analysing if they comple-
mentary.

Empir Software Eng

– Understanding the customers’ perspective in performing ET and how to encourage ET
for practical usage.

– Embedding ET in an existing testing strategy (including at what test level to use ET and
how much time is enough to perform ET?).

– Develop a more precise classification of ‘tester experience’ so that we are able to
quantify the relationship between experience and performance of ET.

– Understanding the limitations of the ET approach in industrial contexts (including when
precise repeatability of regression testing is required).

Appendix A: Test Case Template for TCT

Please use this template to design the test cases. Fill the fields accordingly.

– Date:
– Name:
– Subject ID:

Table 14 Test case template

Test case ID Function Priority Description Inputs Expected results Result Comments

Appendix B: Defect Report

Please report your found defects in this document. Once you are done, please return the
document to the instructor.

– Name:
– Subject ID:

Table 15 Defect types

Severity Description

1 Critical: Prevents using the application, data loss, or serious crash

2 Normal: Prevents or seriously hinders using a feature

3 Minor: Hinders using a feature, but the effect is minor or cosmetic annoyance

and work around is easy

Empir Software Eng

Table 16 Defects in the experimental object

No Function Regression (Yes/No) Test case ID Title Find time (hh:mm) Severity (1, 2, 3)

Detailed description: Description (how to reproduce, what was expected, what was the actual result)

Appendix C: ET – Test Session Charter

– Description: In this test session your task is to do functional testing for jEdit application
feature set from the view point of a typical user. Your goal is to analyse the system’s
suitability to intended use from the viewpoint of a typical test editor user. Take into
account the needs of both an occasional user who is not familiar with all the features of
the jEdit as well as an advanced user.

– What – Tested areas: Try to cover in your testing all features listed below. Focus into
first priority functions, but make sure that you cover also the second priority functions
on some level during the fixed length session.

– First priority functions (refer to Section 3.5).
– Second priority functions (refer to Section 3.5).

– Why – Goal: Your goal is to reveal as many defects in the system as possible. The found
defects are described briefly and the detailed analysis of the found defects is left out in
this test session.

– How – Approach: Focus is on testing the functionality. Try to test exceptional cases,
valid as well as invalid inputs, typical error situations, and things that the user could do
wrong. Use manual testing and try to form equivalence classes and test boundaries. Try
also to test relevant combinations of the features.

– Focus – What problem to look for: Pay attention to the following issues:

– Does the function work as described in the user manual?
– Does the function do things that it should not?
– From the viewpoint of a typical user, does the function work as the user would

expect?
– What interactions the function have or might have with other functions? Do

these interactions work correctly as a user would expect?

– Exploratory log: Write your log in a separate document.

References

Abran A, Bourque P, Dupuis R, Moore JW, Tripp LL (eds) (2004) Guide to the software engineering body
of knowledge – SWEBOK. IEEE Press, Piscataway

Agruss C, Johnson B (2000) Ad hoc software testing: a perspective on exploration and improvisation.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.2070

Ahonen J, Junttila T, Sakkinen M (2004) Impacts of the organizational model on testing: three industrial
cases. Empir Softw Eng 9(4):275–296

Ali S, Briand L, Hemmati H, Panesar-Walawege R (2010) A systematic review of the application and
empirical investigation of search-based test case generation. IEEE Trans Softw Eng 36(6):742–762

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.2070

Empir Software Eng

Andersson C, Runeson P (2002) Verification and validation in industry – a qualitative survey on the state
of practice. In: Proceedings of the 2002 international symposium on empirical software engineering
(ISESE’02). IEEE Computer Society, Washington, DC

Arisholm E, Gallis H, Dybå T, Sjøberg DIK (2007) Evaluating pair programming with respect to system
complexity and programmer expertise. IEEE Trans Softw Eng 33:65–86

Bach J (2000) Session-based test management. Software Testing and Quality Engineering Magazine, vol 2,
no 6

Bach J (2003) Exploratory testing explained. http://www.satisfice.com/articles/et-article.pdf
Basili V, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE Trans Softw

Eng 25(4):456–473
Beer A, Ramler R (2008) The role of experience in software testing practice. In: Proceedings of euromicro

conference on software engineering and advanced applications
Berner S, Weber R, Keller RK (2005) Observations and lessons learned from automated testing. In:

Proceedings of the 27th international conference on software engineering (ICSE’05). ACM, New York
Bertolino A (2007) Software testing research: achievements, challenges, dreams. In: Proceedings of the 2007

international conference on future of software engineering (FOSE’07)
Bertolino A (2008) Software testing forever: old and new processes and techniques for validating today’s

applications. In: Jedlitschka A, Salo O (eds) Product-focused software process improvement, lecture
notes in computer science, vol 5089. Springer, Berlin Heidelberg

Bhatti K, Ghazi AN (2010) Effectiveness of exploratory testing: an empirical scrutiny of the challenges and
factors affecting the defect detection efficiency. Master’s thesis, Blekinge Institute of Technology

Briand LC (2007) A critical analysis of empirical research in software testing. In: Proceedings of the 1st inter-
national symposium on empirical software engineering and measurement (ESEM’07). IEEE Computer
Society, Washington, DC

Brooks A, Roper M, Wood M, Daly J, Miller J (2008) Replication’s role in software engineering. In: Shull F,
Singer J, Sjøberg DI (eds) Guide to advanced empirical software engineering. Springer, London, pp 365–
379. doi:10.1007/978-1-84800-044-5 14

Chillarege R, Bhandari I, Chaar J, Halliday M, Moebus D, Ray B, Wong MY (1992) Orthogonal defect
classification–a concept for in-process measurements. IEEE Trans Softw Eng 18(11):943–956

Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum
da Mota Silveira Neto PA, do Carmo Machado I, McGregor JD, de Almeida ES, de Lemos Meira SR (2011)

A systematic mapping study of software product lines testing. Inf Softw Technol 53(5):407–423
Dias Neto AC, Subramanyan R, Vieira M, Travassos GH (2007) A survey on model-based testing approaches:

a systematic review. In: Proceedings of the 1st ACM international workshop on empirical assess-
ment of software engineering languages and technologies (WEASELTech’07): held in conjunction with
the 22nd IEEE/ACM international conference on automated software engineering (ASE) 2007. ACM,
New York

do Nascimento LHO, Machado PDL (2007) An experimental evaluation of approaches to feature testing in
the mobile phone applications domain. In: Workshop on domain specific approaches to software test
automation (DOSTA’07): in conjunction with the 6th ESEC/FSE joint meeting. ACM, New York

Dustin E, Rashka J, Paul J (1999) Automated software testing: introduction, management, and performance.
Addison-Wesley Professional

Houdek F, Ernst D, Schwinn T (2002) Defect detection for executable specifications – an experiment. Int J
Softw Eng Knowl Eng 12(6):637–655

Galletta DF, Abraham D, El Louadi M, Lekse W, Pollalis YA, Sampler JL (1993) An empirical study of
spreadsheet error-finding performance. Account Manag Inf Technol 3(2):79–95

Goodenough JB, Gerhart SL (1975) Toward a theory of test data selection. SIGPLAN Notes 10(6):493–510
Graves TL, Harrold MJ, Kim JM, Porter A, Rothermel G (2001) An empirical study of regression test

selection techniques. ACM Trans Softw Eng Methodol 10:184–208
Grechanik M, Xie Q, Fu C (2009) Maintaining and evolving GUI-directed test scripts. In: Proceedings of the

31st international conference on software engineering (ICSE’09). IEEE Computer Society, Washington,
DC, pp 408–418

Hartman A (2002) Is issta research relevant to industry? SIGSOFT Softw Eng Notes 27(4):205–206
Höst M, Wohlin C, Thëlin T (2005) Experimental context classification: incentives and experi-

ence of subjects. In: Proceedings of the 27th international conference on software engineering
(ICSE’05)

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments of the effectiveness of data flow and con-
trol flow based test adequacy criteria. In: Proceedings of the 16th international conference on software
engineering (ICSE’94). IEEE Computer Society Press, Los Alamitos, pp 191–200

IEEE 1044-2009 (2010) IEEE standard classification for software anomalies

http://www.satisfice.com/articles/et-article.pdf
http://dx.doi.org/10.1007/978-1-84800-044-5_14

Empir Software Eng

Itkonen J (2008) Do test cases really matter? An experiment comparing test case based and exploratory
testing. Licentiate Thesis, Helsinki University of Technology

Itkonen J, Rautiainen K (2005) Exploratory testing: a multiple case study. In: 2005 international symposium
on empirical software engineering (ISESE’05), pp 84–93

Itkonen J, Mäntylä M, Lassenius C (2007) Defect detection efficiency: test case based vs. exploratory testing.
In: 1st international symposium on empirical software engineering and measurement (ESEM’07), pp
61–70

Itkonen J, Mäntylä MV, Lassenius C (2009) How do testers do it? An exploratory study on manual test-
ing practices. In: 3rd international symposium on empirical software engineering and measurement
(ESEM’09), pp 494–497

Itkonen J, Mäntylä M, Lassenius C (2013) The role of the tester’s knowledge in exploratory software testing.
IEEE Trans Softw Eng 39(5):707–724

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. IEEE Trans Softw
Eng 37(5):649–678

Juristo N, Moreno AM (2001) Basics of software engineering experimentation. Kluwer, Boston
Juristo N, Moreno A, Vegas S (2004) Reviewing 25 years of testing technique experiments. Empir Softw Eng

9(1):7–44
Kamsties E, Lott CM (1995) An empirical evaluation of three defect detection techniques. In: Proceed-

ings of the 5th European software engineering conference (ESEC’95). Springer, London, pp 362–
383

Kaner C, Bach J, Pettichord B (2008) Lessons learned in software testing, 1st edn. Wiley-India
Kettunen V, Kasurinen J, Taipale O, Smolander K (2010) A study on agility and testing processes

in software organizations. In: Proceedings of the international symposium on software testing and
analysis

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam KE, Rosenberg J (2002) Pre-
liminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28:721–
734

Kuhn D, Wallace D, Gallo A (2004) Software fault interactions and implications for software testing. IEEE
Trans Softw Eng 30(6):418–421

Lung J, Aranda J, Easterbrook S, Wilson G (2008) On the difficulty of replicating human subjects stud-
ies in software engineering. In: ACM/IEEE 30th international conference on software engineering
(ICSE’08)

Lyndsay J, van Eeden N (2003) Adventures in session-based testing. www.workroom-productions.com/
papers/AiSBTv1.2.pdf

Myers GJ, Sandler C, Badgett T (1979) The art of software testing. Wiley, New York
Naseer A, Zulfiqar M (2010) Investigating exploratory testing in industrial practice. Master’s thesis, Blekinge

Institute of Technology
Nie C, Leung H (2011) A survey of combinatorial testing. ACM Comput Surv 43(2):1–29
Poon P, Tse TH, Tang S, Kuo F (2011) Contributions of tester experience and a checklist guide-

line to the identification of categories and choices for software testing. Softw Qual J 19(1):141–
163

Ryber T (2007) Essential software test design. Unique Publishing Ltd.
Sjøberg D, Hannay J, Hansen O, Kampenes V, Karahasanovic A, Liborg NK, Rekdal A (2005)

A survey of controlled experiments in software engineering. IEEE Trans Softw Eng 31(9):
733–753

Svahnberg M, Aurum A, Wohlin C (2008) Using students as subjects – An empirical evaluation. In:
Proceedings of the 2nd ACM-IEEE international symposium on empirical software engineering and
measurement (ESEM’08). ACM, New York

Taipale O, Kalviainen H, Smolander K (2006) Factors affecting software testing time schedule. In: Proceed-
ings of the Australian software engineering conference (ASE’06). IEEE Computer Society, Washington,
DC, pp 283–291

van Veenendaal E, Bach J, Basili V, Black R, Comey C, Dekkers T, Evans I, Gerard P, Gilb T, Hatton L,
Hayman D, Hendriks R, Koomen T, Meyerhoff D, Pol M, Reid S, Schaefer H, Schotanus C, Seubers
J, Shull F, Swinkels R, Teunissen R, van Vonderen R, Watkins J, van der Zwan M (2002) The testing
practitioner. UTN Publishers

Våga J, Amland S (2002) Managing high-speed web testing. Springer, New York, pp 23–30
Vargha A, Delaney HD (2000) A critique and improvement of the CL common language effect size statistics

of McGraw and Wong. J Educ Behav Stat 25(2):101–132

http://www.workroom-productions.com/papers/AiSBTv1.2.pdf
http://www.workroom-productions.com/papers/AiSBTv1.2.pdf

Empir Software Eng

Weyuker EJ (1993) More experience with data flow testing. IEEE Trans Softw Eng 19:912–919
Whittaker JA (2010) Exploratory software testing. Addison-Wesley
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software

engineering: an introduction. Kluwer, Norwell
Wood M, Roper M, Brooks A, Miller J (1997) Comparing and combining software defect detection

techniques: a replicated empirical study. In: Proceedings of the 6th European software engineering con-
ference (ESEC’97) held jointly with the 5th ACM SIGSOFT international symposium on foundations of
software engineering (FSE’97). Springer New York, pp 262–277

Yamaura T (2002) How to design practical test cases. IEEE Softw 15(6):30–36
Yang B, Hu H, Jia L (2008) A study of uncertainty in software cost and its impact on optimal software release

time. IEEE Trans Softw Eng 34(6):813–825

Wasif Afzal is a postdoctoral research fellow at Mlardalen University, Sweden. He received his PhD in Soft-
ware Engineering from Blekinge Institute of Technology in 2011. His research interests are within software
testing, prediction and estimation in software engineering and application of artificial intelligence techniques
to software engineering problems.

Ahmad Nauman Ghazi is a PhD student in Software Engineering at the Department of Software Engineer-
ing, Blekinge Institute of Technology, Sweden. He received his MSc. in Software Engineering from Blekinge
Institute of Technology in 2010 and a BS in Software Engineering from Bahria University, Islamabad, Pak-
istan in 2005. His research interests include empirical software engineering, exploratory testing and testing
of heterogeneous systems.

Empir Software Eng

Juha Itkonen works as a post-doc researcher at the Department of Computer Science and Engineering, Aalto
University, Finland. He received his D. Sc. degree in software engineering in 2012 from Aalto University. His
research interests focus on experience-based and exploratory software testing and human issues in software
engineering. In his current research, he is working also on quality assurance in large-scale agile context.
He conducts empirical research relying both on qualitative and quantitative methods and prefers research in
industrial context.

Richard Torkar is an associate professor at Chalmers and the University of Gothenburg. His focus is
on quantitative research methods in the field of software engineering. He received his PhD in software
engineering from Blekinge Institute of Technology, Sweden, in 2006.

Empir Software Eng

Anneliese Andrews is Professor and Chair of the Department of Computer Science at the University of
Denver. Her current research interests include software testing, software design, software maintenance, and
empirical software engineering. She has published well over 150 research papers in refereed software engi-
neering journals and conferences. She serves on the editorial board of five software engineering journals and
on many program committees for conferences. She received a PhD degree in Computer Science from Duke
University.

Khurram Bhatti is working as a Verification and Automation Engineer at Ercisson, Sweden. He received
his MSc. in Software Engineering from Blekinge Institute of Technology in 2010 and a BS in Software
Engineering from Bahria University, Islamabad, Pakistan in 2005. His research interests include exploratory
testing and testing in agile context.

	Empir Software Eng
	Abstract
	Introduction
	Related Work
	Methodology
	Goal Definition
	Research Questions and Hypotheses Formulation
	Selection of Subjects
	Experiment Design
	Instrumentation
	Operation

	Results and Analysis
	Defect Count
	Detection Difficulty, Types and Severity
	False Defect Reports

	Discussion
	RQ 1: How do the ET and TCT Testing Approaches Compare with Respect to the Number of Defects Detected in a Given Time?
	RQ 2: How do the ET and TCT Testing Approaches Compare with Respect to Defect Detection Difficulty, Types of Identified Defects and Defect Severity Levels?
	RQ 3: How do the ET and TCT Testing Approaches Compare in Terms of Number of False Defect Reports?

	Validity Threats
	Internal Validity
	Conclusion Validity
	Construct Validity
	External Validity

	Conclusions and Future Work
	: Test Case Template for TCT
	: Defect Report
	: ET – Test Session Charter
	References

