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Abstract A large percentage of the cost of rework can be avoided by finding more faults

earlier in a software test process. Therefore, determination of which software test phases to focus

improvement work on has considerable industrial interest. We evaluate a number of prediction

techniques for predicting the number of faults slipping through to unit, function, integration,

and system test phases of a large industrial project. The objective is to quantify improvement

potential in different test phases by striving toward finding the faults in the right phase. The

results show that a range of techniques are found to be useful in predicting the number of faults

slipping through to the four test phases; however, the group of search-based techniques (genetic

programming, gene expression programming, artificial immune recognition system, and par-

ticle swarm optimization–based artificial neural network) consistently give better predictions,

having a representation at all of the test phases. Human predictions are consistently better at two

of the four test phases. We conclude that the human predictions regarding the number of faults

slipping through to various test phases can be well supported by the use of search-based

techniques. A combination of human and an automated search mechanism (such as any of the

search-based techniques) has the potential to provide improved prediction results.
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1 Introduction and problem statement

Presence of a number of faults1 usually indicates an absence of software quality. Software

testing is the major fault-finding activity; therefore, much research has focused on making

the software test process as efficient and as effective as possible. One way to improve the

test process efficiency is to avoid unnecessary rework by finding more faults earlier. This

argument is based on the premise that the faults are cheaper to find and remove earlier in

the software development process (Boehm and Basili 2001). Faults-slip-through (FST)

metric (Damm et al. 2006; Damm 2007) is one way of providing quantified decision

support to reduce the effort spent on rework.

Faults-slip-through (FST) metric is used for determining whether a fault slipped through

the phase where it should have been found or not (Damm et al. 2006; Damm 2007). The

term phase refers to any phase in a typical software development life cycle (ISO/ IEC

12207 (STD 2008) defines the different software development phases). However, the most

interesting and industry-supported applications of FST measurement are in the test phase

of a software development life cycle, because it is typically in this phase where the faults

are classified into their actual and expected identification phases.

The time between when a fault was inserted and found is commonly referred to as ‘fault

latency’ (2008). Figure 1 shows the difference between fault latency and FST (Damm et al.

2006; Damm 2007). As it is clear from this figure, the FST measurement evaluates when it

is cost efficient to find a certain fault. To be able to specify this, the organization must first

determine what should be tested in which phase (Damm et al. 2006; Damm 2007).

Studies on multiple projects executed within several different organizations at Ericsson

(Damm 2007) showed that FST measurement has some promising advantages:

1. FST can prioritize which phases and activities to improve.

2. The FST measurement approach can assess to which degree a process achieves early

and cost-effective software fault detection (one of the studies indicated that it is

possible to obtain good indications of the quality of the test process already when

20–30 % of the faults have been found).

Figure 2 shows an example snippet of a faults-slip-through matrix showing the faults

slipping through to later phases. The columns in Fig. 2 represent the phases in which the

faults were found (Found During), whereas the rows represent the phases where the faults

should have been found (Expected fault identification phase). For example, 56 of the faults

that were found in the function test should have been found during the unit test.

Apart from the studies done by Damm et al. (2006) and Damm (2007), there are other

studies on successful industrial implementation of FST measurements. Two such cases are

the FST implementations at Ericsson Nikola Tesla (Hribar 2008; Antolić 2007). They

started collecting FST measurements in all development projects from the middle of the

year 2006. The results were encouraging with a decrease in fault-slippage to customers,

improvements of test configurations, and improvements of test cases used in the verifi-

cation phase of the projects.

Considering the initial successful results of implementing FST measurement across

different organizations within Ericsson, our industrial partner became interested in

investigating how to use FST measurement to provide additional decision support for

project management. For example, Staron and Meding (2008) highlight that the prediction

1 According to IEEE Standard Glossary of Software Engineering Terminology (IEEE 1990), a fault is a
manifestation of a human mistake.
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of the number of faults slipping through can be a refinement to their proposed approach for

predicting the number of defects in the defect database. Similarly, Damm (2007) highlights

that FST measurement can potentially be used as a support tool in software fault predic-

tions. This additional decision support is to make the software development more pre-

dictable (Rakitin 2001).

The number of faults found by the test team impacts whether or not a project would be

completed on schedule and with a certain quality. The project manager has to balance the

resources, not only for fixing the identified faults, but also to implement any new func-

tionality. This balance has to be distributed correctly on a weekly or a monthly basis. Any

failure to achieve this balance would mean that either the project team is late with the

project delivery or the team resources are kept under-utilized.

In this paper, we focus on predicting the number of faults slipping through to different

test phases, multiple weeks in advance (a quantitative modeling task). We compare a

variety of prediction techniques2. Since there is a general lack of empirical evaluation of

expert judgement (Tomaszewski et al. 2007; Catal and Diri 2009) and due to the fact that

predictions regarding software quality are based on expert judgements at our organization,

and we would argue in industry in general, we specifically compare human expert pre-

dictions with these techniques. Thus, the motivation of doing this study is to:

– avoid predictable pitfalls like effort/schedule over-runs, under-utilization of resources,

and a large percentage of rework.

– provide better decision support to the project manager so that faults are prevented early

in the software development process.

– prioritize which phases and activities to improve.

The quantitative data modeling makes use of several independent variables at the

project level, i.e., variables depicting work status, testing progress status, and fault-inflow.

The dependent variables of interest are then the number of faults slipping through to

various test phases, predicted multiple weeks in advance.

Design Coding Unit test System Test OperationFunction Test

= When fault was inserted

= When fault was found and corrected

= FST fault belonging (when most cost-effective to find)

Fault latency

Fault slippage

Fig. 1 Difference between fault
latency and FST

2 Statistical techniques (multiple regression, pace regression), tree-structured techniques (M5P, REPTree),
nearest neighbor techniques (K-Star, K-nearest neighbor), ensemble techniques (bagging and rotation for-
est), machine-learning techniques (support vector machines and back-propagation artificial neural net-
works), search-based techniques (genetic programming, artificial immune recognition systems, particle
swarm optimization based artificial neural networks and gene expression programming), and expert
judgement.
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Hence, we are interested in answering the following research questions:

RQ.1 How do different techniques compare in FST prediction performance?

RQ.2 Can other techniques better predict the number of faults slipping through to

different test phases than human expert judgement?

The data used in the quantitative data modeling come from large and complex software

projects from the telecommunications industry, as our objective is to come up with results

that are representative of real industrial use. Also large-scale projects offer different kinds

of challenges, e.g., the factors affecting the projects are diverse and many, data are dis-

tributed across different systems, and success is dependent on the effort of many resources.

Moreover, a large project constitutes a less predictable environment, and there is a lack of

research on how to use predictive models in such an environment (Jørgensen et al. 2000).

We also would like to mention that this study is an extended version of the authors’

earlier conference manuscript (Afzal et al. 2010) where only a limited number of tech-

niques were compared with no evaluation of expert judgement.

The rest of the paper is organized as follows. Section 2 summarizes the related work.

Section 3 describes the study context, variables selection, the test phases under consid-

eration, the performance evaluation measures, and the techniques used. Section 4 presents

a quantitative evaluation of various techniques for the prediction task. The results from the

quantitative evaluation of different models are discussed in Sect. 5, while the study validity

threats are given in Sect. 6. The paper is concluded in Sect. 7, while ‘‘Appendix’’ outlines

the parameter settings for the different techniques.

2 Related work

Due to the definition of software quality in many different ways, previous studies have

focused on predicting different but related dependent variables of interest; examples

include predicting for defect density (Nagappan and Ball 2005; Mohagheghi et al. 2004),

software defect content estimation (Briand et al. 2000; Weyuker et al. 2010), fault-

proneness (Lessmann et al. 2008; Arisholm et al. 2010), and software reliability prediction

in terms of time-to-failure (Lyu 1996). In addition, several independent variables have

been used to predict the above dependent variables of interest; examples include prediction

using size and complexity metrics (Gyimothy et al. 2005), testing metrics (Veevers and

Marshall 1994; Tomaszewski et al. 2007), and organizational metrics (Nagappan et al.

2008). The actual prediction is performed using a variety of approaches and can broadly be

Found During:

Expected fault 
identification phase: Review Unit Test

Function
Test

Integration
Test

System
Test

Acceptance
Test

Customer 
Identified Total

Review 15 25 86 25 30 2 1 184

Unit Test 19 56 15 19 1 0 110

Function Test 33 4 4 0 0 41

Integration Test 8 11 0 0 19

System Test 4 0 1 5

Acceptence Test 1 0 1

Fig. 2 An example FST matrix
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classified into statistical regression techniques, machine-learning approaches, and mixed

algorithms (Challagulla et al. 2005). Increasingly, evolutionary and bio-inspired approa-

ches are being used for software quality classification (Liu et al. 2010; Afzal and Torkar

2008), while expert judgement is used in very few studies (Tomaszewski et al. 2007;

Zhong et al. 2004).

For a more detailed overview of related work on software fault prediction studies, the

reader is referred to Tian (2004), Fenton and Neil (1999), Catal and Diri (2009), Wagner

(2006), and Runeson et al. (2006).

This study is different from the above software quality evaluation studies. First, the

dependent variable of interest for the quantitative data modeling is the number of faults

slipping through to various test phases, with the aim of taking corrective actions for

avoiding unnecessary rework late in software testing. Second, the independent variables of

interest for the quantitative data modeling are diverse and at the project level, i.e., variables

depicting work status, testing progress status and fault-inflow (shown later in Table 1). A

similar set of variables were used in a study by Staron and Meding (2008), but predicted

weekly defect inflow and used different techniques. Third, for the sake of comparison, we

include a variety of carefully selected techniques, representing both commonly used and

newer approaches.

Together this means our study is broader and more industrially relevant than previous

studies.

3 Study plan

This section describes the context, independent/dependent variables for the prediction

model, the research method, the predictive performance measures, and the techniques used

for quantitative data modeling.

Table 1 Variables of interest for the prediction models

No. Description Abbreviation Category

1 Fault-inflow F. inflow Fault-inflow

2 No. of work packages planned for system integration No. WP. PL. SI Status rankings
of WPs

3 No. of work packages delivered to system integration No. WP. DEL. SI

4 No. of work packages tested by system integration No. WP Tested. SI

5 No. of faults slipping through to all of the test phases No. FST FST

6 No. of faults slipping through to the unit test FST-Unit

7 No. of faults slipping through to the function test FST-Func

8 No. of faults slipping through to the integration test FST-Integ

9 No. of faults slipping through to the system test FST-Sys

10 No. of system test cases planned No. System. TCs. PL TC progress

11 No. of system test cases executed No. System. TCs. Exec.

12 No. of interoperability test cases planned No. IOT TCs. PL

13 No. of interoperability test cases executed No. IOT TCs. Exec.

14 No. of network signaling test cases planned No. NS TCs. PL

15 No. of network signaling test cases executed No. NS TCs. Exec.
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3.1 Study context

As given in Sect. 1, our context is large and complex software projects in the telecom-

munications industry. Our subject company develops mobile platforms and wireless

semiconductors. The projects are aimed at developing platforms introducing new radio

access technologies written using the C programming language. The average number of

persons involved in these projects is approximately 250. Since the project is from a similar

domain, the data from one of the projects are used as a baseline to train the models, while

the data from the second project are used to evaluate the models’ results. We have data

from 45 weeks of the baseline project to train the models, while we evaluate the results on

data from 15 weeks of an ongoing project. Figure 3 shows the number of faults occurring

per week for the training and the testing set.

The management of these projects follow the company’s general project model called

PROfessional Project Steering (PROPS). PROPS is based on the concepts of tollgates,
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Fig. 3 Number of fault occurrences per week for the training set and the testing set
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milestones, steering points, and checkpoints to manage and control project deliverables.

Tollgates represent long-term business decisions, while milestones are predefined events

representing intermediate objectives at the operating work level. The monitoring of these

milestones is an important element of the project management model. Steering points are

defined to coordinate multiple parallel platform projects, e.g., handling priorities between

different platform projects. The checkpoints are defined in the development process to

define the work status in a process. Multiple checkpoints might have to be passed for

reaching a certain milestone. Figure 4 shows an abstract level view of these concepts.

At the operative work level, the software development is structured around work
packages. These work packages are defined during the project planning phase. The work

packages are defined to implement change requests or a subset of a use-case; thus, the

definition of work packages is driven by the functionality to be developed. An essential

feature of work packages is that it allows for simultaneous work on different modules of

the project at the same time by multiple teams.

Since different modules might get affected by developing a single work package, it is

difficult to obtain consistent metrics at the module level. The structure of a project into

work packages presents an obvious choice of selecting variables for the prediction models

since the metrics at work package level are stable and entail a more intuitive meaning for

the employees at the subject company.

Figure 5 gives an overview of how a given project is divided into work packages that

affect multiple modules. There are three sub-systems shown in Fig. 5, namely A, B, and C.

The division of an overall system into sub-systems is driven by design and architectural

constraints. The modules belonging to the three sub-systems are named as (A1, A2), (B1,

B2), and (C1, C2, C3), respectively. The overall project is divided into a number of work

packages which are named in Fig. 5 as WP1, WP2,…, WPn. Since changes can be made to

multiple modules when developing a single work package, this is shown as dashed arrow

lines. The division of a project into work packages is more definitive with clear boundaries;

therefore, this division is shown as solid arrow lines. Figure 5 also shows the checkpoints,

steering points, and the tollgates that are meant to manage and control project deliverables.

3.2 Variables selection

At our subject company, the work status of various work packages is grouped using a

graphical integration plan (GIP) document. The GIP maps the work packages’ status over

multiple time lines that might indicate different phases of software testing or overall

TG

ChP

ChP

ChP

MS

SP

Fig. 4 PROPS concepts used in
the subject company; TG, SP,
MS, ChP are short for tollgate,
steering point, milestone, and
checkpoint, respectively
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project progress. There are different status rankings of the work packages, e.g., number of

work packages planned to be delivered for system integration testing. A snippet of a GIP is

shown in Fig. 6.

The variables of interest in this study are divided into four sets (Table 1), i.e., fault-

inflow, status rankings of work packages, faults-slip-through, and test case progress. A

description of these four sets of variables is given below.

Customer requirements

Project

WP1 WP2 WP3 WP4 WP5 WPn----------Work packages
       (WPs)

Sub-system A

Sub-system B

Sub-system C

Modules

Modules

Modules

A1

C1 C2

A2

B1

C3

B2

Time-line

Checkpoints

Milestones/
Steering points 

Tollgates

Sub-system

Work package

Module

Checkpoint

Steering point

Tollgate

Fig. 5 Division of requirements into work packages and modules (work model), thereby achieving
tollgates, milestones/steering points, and checkpoints (management model)

916 917 918 919 920

Work packages 
planned delivery 

to system 
integration

Work packages 
delivered to 

system 
integration

Work packages 
planned delivery 

to system 
integration

Work packages 
post-integration 

tested by system 
integration

Overall project 
progress time line

System integration 
time line

Week 20 of year 2009

Delivered to system integration

Planned delivery to system integration

Post-integration tested by system integration

Fig. 6 The graphical integration plan showing the status of various work packages over multiple time lines
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During the project life cycle there are certain status rankings related to the work

packages (shown under the category of ‘status rankings of WPs’ in Table 1) that influence

fault-inflow, i.e., the number of faults found in the consecutive project weeks. The

information on these status rankings is also conveniently extracted from the GIP which is a

general planning document at the company. Another important set of variables for our

prediction models is the actual test case (TC) progress data, shown under the category of

‘TC progress’ in Table 1, which have a more direct influence on the fault-inflow. The

information on the number of test cases planned and executed at different test phases is

readily available from an automated report generation tool that uses data from an internally

developed system for fault logging. These variables, along with the status rankings of the

work packages, influence the fault-inflow; so we monitor the fault-inflow as another var-

iable for our prediction models. Another set of variables representing the output is the

number of faults that slipped through to the unit, function, integration, and system test

phases, indicated under the category ‘FST’ in Table 1. We also recorded the accumulated

number of faults slipping through to all the test phases. All of the above measurements

were collected at the subject company on a weekly basis.

3.3 Test phases under consideration

Software testing is usually performed at different levels, i.e., at the level of a single

module, a group of such modules or a complete system (swe 2006). These different levels

are termed as test phases in our subject company; therefore, we stick to calling them test

phases throughout the paper. The purpose of different test phases, as defined at our subject

company, is given below:

– Unit: To find faults in module internal functional behavior, e.g., memory leaks.

– Function: To find faults in functional behavior involving multiple modules.

– Integration: To find configuration, merge, and portability faults.

– System: To find faults in system functions, performance, and concurrency.

Some of these earlier test levels are composed of constituent test activities that jointly

make up the higher-order test levels. The following is the division of test levels (i.e., unit,

function, integration, and system) into constituent activities at our subject company:

– Unit: Hardware development, module test.

– Function: Function test.

– Integration: Integration of modules to functions, integration test.

– System: System test, delivery test.

Our focus is then to predict the number of faults slipping through to each of these test

phases.

3.4 Performance evaluation measures and prediction techniques

The evaluation of predictive performance of various techniques is done using measures of

predictive accuracy and goodness of fit.

– The predictive accuracy of different techniques is compared using absolute residuals

(i.e., |actual-predicted|) (Pickard et al. 1999; Kitchenham et al. 2001; Shepperd et al.

2000).
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– The goodness of fit of the results from different techniques is assessed using the two-

sample two-sided Kolmogorov–Smirnov (K–S) test. For the K–S test, we use a = 0.05,

and if the K–S statistic J is greater or equal than the critical value J a, we infer that the

two samples did not have the same probability distribution and hence do not represent

significant goodness of fit.

We consider a technique better based on the following criteria

– If technique A performs statistically significantly better than technique B for both

predictive accuracy and goodness of fit, then technique A is declared as better.

– If no statistically significant differences are found between techniques A and B for

predictive accuracy, but technique B has statistically significant goodness of fit in

comparison with technique A, then technique B is declared as better.

– If no statistically significant differences are found between techniques A and B for

goodness of fit, but technique B has statistically significant predictive accuracy in

comparison with technique A, then technique B is declared as better.

The above-mentioned evaluation procedure is an example of multi-criteria-based

evaluation system, a concept similar to the one presented by Lavesson and Davidsson in

(2008).

A brief description of each of the different techniques used in this study appears in

Table 2

4 Analysis and interpretation

This section describes the quantitative analysis helping us answer our research questions.

4.1 Analyzing dependencies among variables

Before applying the specific techniques for prediction, we analyzed the dependencies

among variables (see Table 1) using scatter plots. We were especially interested in

visualizing:

– The relationship between the measures of status rankings of work packages.

– The relationship between the measures of test case progress.

– Fault-inflow versus the rest of the measures related to status rankings of work packages

and test case progress.

The pairwise scatter plots of the above attributes showed a tendency of nonlinear

relationship. Two of these scatter plots are shown in Fig. 7 for fault-inflow versus number
of faults slipping through all of the test phases (Fig. 7a) and fault-inflow versus number of
work packages tested by system integration (Fig. 7b).

After getting a sense of the relationships among the variables, we used kernel principal

component analysis (KPCA) (Canu et al. 2005) to reduce the number of independent

variables to a smaller set that would still capture the original information in terms of

explained variance in the data set. The role of original variables in determining the new

factors (principal components) is determined by loading factors. Variables with high

loadings contribute more in explaining the variance. The results of applying the Gaussian

kernel, KPCA (Table 3) showed that the first four components explained 97 % of the

variability in the data set. We did not include the faults-slip-through measures in the KPCA
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since these are the attributes we are interested in predicting. In each of the four compo-

nents, all the variables contributed with different loadings, with the exception of two,

namely number of network signaling test cases planned and number of network signaling
test cases executed. Hence, we excluded these two variables and use the rest for predicting

the faults-slip-through in different test phases.

Specifically, for predicting the faults-slippage to unit test, we use the fault-inflow, work-

package status rankings, and test case progress metrics. For predicting the faults-slippage

to subsequent test phases, we also include the faults-slippage for the proceeding test phase;

for instance, when predicting the faults-slip-through at the function test phase, we also use
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Fig. 7 Example scatter plots for fault-inflow versus number of faults slipping through all of the test phases
and fault-inflow versus number of work packages tested by system integration. a Scatter plot for fault-inflow
versus number of faults slipping through all of the test phases. b Scatter plot for fault-inflow versus number
of work packages tested by system integration
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the faults-slip-through at unit test phase as an independent variable along with fault-inflow,

work-package status rankings, and test case progress metrics.

The model training and testing procedure along with the parameter settings for different

techniques is given in detail in ‘‘Appendix’’.

4.2 Performance evaluation of techniques for FST prediction

Next, we present the results of the performance of different techniques in predicting FST

for each test phase that would help us to answer RQ.1. As given in Sect. 3.4, we evaluate

the prediction performance using the measures for predictive accuracy and goodness of fit.

The common analysis procedure to follow is to compare the box plots of the absolute

residuals for different prediction techniques. But since box plots cannot confirm whether

one prediction technique is significantly better than another, we use a statistical test

(parametric or a nonparametric test—depending upon whether the assumptions of the test

are satisfied) for testing the equality of population medians among groups of prediction

techniques. Upon the rejection of the null hypothesis of equal population medians, a

multiple comparisons (post-hoc) test is performed on the group medians to determine

which means differ. Finally, we proceed with assessing the goodness of fit using the K–S

test described in Sect. 3.4.

4.2.1 Prediction of FST at the unit test phase

The box plots of absolute residuals for predicting FST at the unit test phase for different

techniques are shown in Fig. 8a. The box plot having the median value close to the 0 mark

on the y-axis (shown as a dotted horizontal line in Fig. 8a) and a smaller spread of the

distribution indicates better predictive accuracy. Keeping in view these two properties of

the box plots, there seems to be only a marginal difference in the residual box plots of PR,

M5P, Knn, Bagging, GEP, and PSO-ANN . AIRS has a median at the 0 mark but shows

larger spread in comparison with other techniques. The human/expert prediction also

shows a larger spread but smaller than AIRS . Two outliers for the human prediction are

extreme as compared to the one extreme outlier for PSO-ANN . Predictions from MR,

SVM, and ANN appear to be farther away from the 0 mark on the y-axis, an indication that

the predictions are not closely matching the actual FST values.

To test for any statistically significant differences in the models’ residuals, the non-

parametric Kruskal–Wallis test was used to examine any statistical differences between the

residuals and to confirm the trend observed from the box plots. The skewness in

the residual box plots for some techniques motivated the use of the nonparametric test. The

result of the Kruskal–Wallis test (p = 3.2e-14) suggested that it is possible to reject the

null hypothesis of all samples being drawn from the same population at significance level,

a = 0.05. This is to suggest that at least one sample median is significantly different from

the others. In order to determine which pairs are significantly different, we apply a multiple

comparisons test (Tukey–Kramer, a = 0.05). The results of the multiple comparisons are

displayed using a graph given in Fig. 8b. The mean of each prediction technique is rep-

resented by a circle, while the straight lines on both sides of the circle represents an

interval. The means of two prediction techniques are significantly different if their intervals

are disjoint and are not significantly different if their intervals overlap. For illustrative

purposes, Fig. 8b shows vertical dotted lines for MR . There are two other techniques

(SVM and ANN) where either of these two dotted lines cut through their intervals, showing

that the means for MR, SVM, and ANN are not significantly different. It is interesting to
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Fig. 8 Results showing box plots of absolute residuals and multiple comparisons of the absolute residuals
between all techniques at the unit test phase. a Box plots of the residuals for each technique in predicting
FST at the unit test phase. b Results of the multiple comparisons test with a = 0.05 (the vertical dotted lines
indicating that 12 techniques have mean ranks significantly different from MR)
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observe that there is only a single technique (AIRS) whose mean is significantly different

(and better) than all these three techniques (i.e., MR, SVM, and ANN). There are, however,

no significant pairwise differences between the means of AIRS and rest of the techniques

(i.e., PR, M5P, REPTree, K*, Knn, Bagging, RF, GP, GEP, PSO-ANN, Human). Human

predictions, on the other hand, are significantly different and better than two of the least

accurate techniques (MR, ANN).

The K–S test result for measuring the goodness of fit for predictions from each tech-

nique relative to the actual FST at the unit test phase appear in Table 4. The techniques

having statistically significant goodness of fit are shown in bold (AIRS and Human).

Figure 9 shows the plot of AIRS, human, and actual FST at the unit test phase. The

statistically significant goodness of fit for AIRS and human can be attributed to the exact

match of actual FST data on 9 out of 15 instances for AIRS and 5 out of 15 instances for

the human. However, the human prediction is off by large values in the last 3 weeks that

can also be seen as extreme outliers in Fig. 8a.

In summary, in terms of predictive accuracy, AIRS showed significantly different

absolute residuals in comparison with the three least performing techniques for predicting

FST at the unit test phase. But then there were found no significant differences between the

absolute residuals of AIRS and rest of the 11 techniques. Human predictions showed

significantly different absolute residuals in comparison with the two least performing

Table 4 Two-sample two-sided K–S test results for predicting FST at the unit test phase with critical
value J0.05 = 0.5

K–S test statistic, J

MR PR M5P REP-

Tree

K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-

ANN

Human

1 0.60 0.60 0.93 0.53 0.80 0.87 1 0.80 0.93 0.53 0.80 0.27 0.73 0.33
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Fig. 9 Plot of the predicted versus the actual FST values at the unit test phase for techniques having
significant goodness of fit
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techniques for predicting FST at the unit test phase. For goodness of fit, AIRS and human

predictions were found to be statistically significant, though the human predictions resulted

in extreme values later in the prediction period.

4.2.2 Prediction of FST at the function test phase

The box plots of absolute residuals for predicting FST at the function test phase for

different techniques are shown in Fig. 10a. We can observe that there is a greater spread of

distribution for each of the techniques as compared with those at the unit test phase. The

box plots for each of the techniques are also farther away from the 0 mark on the y-axis,

with PSO-ANN and SVM having the median closet of all to the 0 mark on the y-axis.

Human and MR prediction shows the greatest spread of distributions, while the box plots

of PR, M5P, K*, Knn, and Bagging show only a marginal difference. The result of the

Kruskal–Wallis test (p = 1.6e-11) at a = 0.05 suggested that at least one sample median is

significantly different from the others. Subsequently, the results of the multiple compari-

sons test (Tukey–Kramer, a = 0.05) appear in Fig. 10b. The absolute residuals of MR and

human are not significantly different (as their intervals overlap), a confirmation of the trend

observed from the box plots. Two of the better techniques having lower medians are SVM

and PSO-ANN . There are no significant differences between the two. Also there are no

significant pairwise differences between SVM and each one of: PR, M5P, REPTree, K*,

Knn, Bagging, GP, GEP.

The K–S test result for measuring the goodness of fit for predictions from each tech-

nique relative to the actual FST at the function test phase appears in Table 5. SVM and

PSO-ANN show statistically significant goodness of fit. Figure 11 shows the line plots of

SVM and PSO-ANN with the actual FST at the function test phase. SVM appears to

behave in Fig. 11 since there are no high peaks showing outliers (as is the case with PSO-

ANN in Week 11).

In summary, in terms of predictive accuracy, residual box plots indicate that SVM and

PSO-ANN are better at predicting FST at the function test phase but there are no significant

differences found with the majority of the other techniques. Also MR and human pre-

dictions are significantly worse than seemingly better SVM and PSO-ANN . SVM and

PSO-ANN also show statistically significant goodness of fit in comparison with other

techniques.

4.2.3 Prediction of FST at the integration test phase

The box plots of absolute residuals for predicting FST at the integration test phase for

different techniques are shown in Fig. 12a. We can observe that there is a smaller spread of

distribution for each technique as compared with the box plots for function test. An

exception is ANN whose box plot is more spread out than other techniques. In terms of the

median being close to the 0 mark on the y-axis, Bagging and GP appear to be promising,

though there seem to be only marginal differences in comparison with PR, M5P, REPTree,

and PSO-ANN . GEP and human each shows two extreme outliers. The result of the

Kruskal–Wallis test (p = 1.7e-5) at a = 0.05 suggested that at least one sample median is

significantly different from the others. Subsequently, the results of the multiple compari-

sons test (Tukey–Kramer, a = 0.05) appear in Fig. 12b. The mean rank for MR is not

significantly different than the ones for SVM, ANN, and the human. GP has the mean rank

that is significantly different than MR and ANN, the two least performing techniques.
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However, there are not any pairwise significant differences between the absolute residuals

for GP and each one of: PR, M5P, REPTree, K*, Knn, SVM, Bagging, RF, GEP, AIRS,

PSO-ANN and Human.
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Fig. 10 Results showing box plots of absolute residuals and multiple comparisons of the absolute residuals
between all techniques at the function test phase. a Box plots of the residuals for each technique in predicting
FST at the function test phase. b Results of the multiple comparisons test with a = 0.05 (the vertical dotted
lines indicating that 6 techniques have mean ranks significantly different from MR)

Software Qual J

123



The K–S test result for measuring the goodness of fit for predictions from each tech-

nique relative to the actual FST at the integration test phase appear in Table 6. Bagging,

GP, AIRS, and human predictions show statistically significant goodness of fit. Figure 13

shows the line plots of Bagging, GP, AIRS, and the human predictions.

In summary, in terms of predictive accuracy, MR and ANN appear to be the two least

performing techniques for predicting FST at the integration test phase, while there were no

statistically significant differences between the majority of the techniques. Bagging, GP,

AIRS, and human predictions show statistically significant goodness of fit in comparison

with other techniques.

4.2.4 Prediction of FST at the system test phase

The box plots of absolute residuals for predicting FST at the system test phase for different

techniques are shown in Fig. 14a. We can observe that there are certain techniques that

appear to do better. These are PR, RF, and GP . The box plots of these three techniques

have medians closer to the 0 mark on the y-axis, with GP being the closest. GP also show

the smallest distribution as compared with PR and RF . For the rest of the techniques, there

is a greater variance in their box plots with outliers. MR, Knn, AIRS, and human box plots

Table 5 Two-sample two-sided K–S test results for predicting FST at the function test phase with critical
value J0.05 = 0.5

K–S test statistic, J

MR PR M5P REP-

Tree

K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-

ANN

Human

1 0.93 0.93 0.73 0.93 0.93 0.4 1 0.80 0.93 0.93 0.93 0.93 0.4 0.73
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Fig. 11 Plot of the predicted versus the actual FST values at the function test phase for techniques having
significant goodness of fit
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seem to be worse, both in terms of the position of the median and the spread of the

distribution. The result of the Kruskal–Wallis test (p = 5.6e-7) at a = 0.05 suggested that

at least one sample median is significantly different from the others. Subsequently, the

results of the multiple comparisons test (Tukey–Kramer, a = 0.05) appear in Fig. 14b. The
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Fig. 12 Results showing box plots of absolute residuals and multiple comparisons of the absolute residuals
between all techniques at the integration test phase. a Box plots of the residuals for each technique in
predicting FST at the integration test phase. b Results of the multiple comparisons test with a = 0.05 (the
vertical dotted lines indicating that eleven techniques have mean ranks significantly different from MR)
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technique with smallest mean rank is GP, and there are no pairwise significant differences

between GP and any of the techniques: PR, Bagging, RF, and PSO-ANN . This finding also

confirms the trend from the box plots. MR is the worst performing technique and there are

no pairwise significant differences between MR and any of the techniques: M5P, REPTree,

K*, Knn, SVM, ANN, Bagging, GEP, AIRS, PSO-ANN, and Human.

The K–S test result for measuring the goodness of fit for predictions from each tech-

nique relative to the actual FST at the system test phase appear in Table 7. PR, GP,and

PSO-ANN show statistically significant goodness of fit. Figure 15 shows the line plots of

PR, GP, PSO-ANN with the actual FST at the system test phase.

In summary, in terms of predictive accuracy, GP, PR, Bagging, RF, and PSO-ANN

perform better than the other techniques for predicting FST at the system test phase. PR,

GP, and PSO-ANN show statistically significant goodness of fit in comparison with other

techniques

4.3 Performance evaluation of human expert judgement vs. other techniques for FST

prediction

The analysis done in the previous Sect. 4.2 would also allow us to answer the RQ.2 that

questions whether other techniques better predict FST than human expert judgement. We

now analyze the performance of human expert judgement versus other techniques for FST

prediction at each of the four test phases.

4.3.1 Prediction of FST at the unit test phase

Figure 8b shows the results of the multiple comparisons test (Tukey–Kramer, a = 0.05)

for FST prediction at the unit test phase. Two techniques have their means significantly

different (and worse) than the human expert judgement. These techniques are MR and

ANN . Otherwise, there are no significant pairwise differences between the means of

human expert judgement and rest of the techniques.

In terms of goodness of fit, Table 4 shows that AIRS and human expert judgement have

statistically significant goodness of fit in comparison with other techniques.

4.3.2 Prediction of FST at the function test phase

Figure 10b shows the results of the multiple comparisons test (Tukey–Kramer, a = 0.05)

for FST prediction at the function test phase. Three techniques have their means signifi-

cantly different (and better) than the human expert judgement. These techniques are PSO-

ANN, SVM, and Knn. Otherwise, there are no significant pairwise differences between the

means of human expert judgement and the rest of the techniques.

In terms of goodness of fit, Table 5 shows that human expert judgement has no sig-

nificant goodness of fit in comparison with SVM and PSO-ANN.

Table 6 Two-sample two-sided K–S test results for predicting FST at the integration test phase with
critical value J0.05 = 0.5

K–S test statistic, J

MR PR M5P REP-

Tree

K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-

ANN

Human

0.73 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.40 0.60 0.33 0.60 0.27 0.60 0.27
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4.3.3 Prediction of FST at the integration test phase

Figure 12b shows the results of the multiple comparisons test (Tukey–Kramer, a = 0.05)

for FST prediction at the integration test phase. No technique has its mean significantly

different than the human expert judgement.

In terms of goodness of fit, Table 6 shows that Bagging, GP, AIRS, and human expert

judgement have significant goodness of fit in comparison with rest of the techniques.
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Fig. 13 Plot of the predicted versus the actual FST values at the integration test phase for techniques having
significant goodness of fit. a Plot of the actual versus predicted FST values (AIRS and Bagging) at the
integration test phase. b Plot of the actual versus predicted FST values (Human and GP) at the integration
test phase
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4.3.4 Prediction of FST at the system test phase

Figure 14b shows the results of the multiple comparisons test (Tukey–Kramer, a = 0.05)

for FST prediction at the system test phase. GP has its mean significantly different (and

better) than the human expert judgement.
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Fig. 14 Results showing box plots of absolute residuals and multiple comparisons of the absolute residuals
between all techniques at the system test phase. a Box plots of the residuals for each technique in predicting
FST at the system test phase. b Results of the multiple comparisons test with a = 0.05 (the vertical dotted
lines indicating that three techniques have mean ranks significantly different from MR)
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Fig. 15 Plot of the predicted versus the actual FST values at the system test phase for techniques having
significant goodness of fit. a Plot of the actual versus predicted FST values (PSO-ANN) at the system test
phase. b Plot of the actual versus predicted FST values (GP and PR) at the system test phase

Table 7 Two-sample two-sided K–S test results for predicting FST at the system test phase with critical
value J0.05 = 0.5

K–S test statistic, J

MR PR M5P REP-

Tree

K* Knn SVM ANN Bagging RF GP GEP AIRS PSO-

ANN

Human

0.67 0.40 0.73 0.93 0.93 0.80 0.87 0.47 0.93 0.67 0.20 0.80 0.73 0.40 0.60
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In terms of goodness of fit, Table 7 shows that GP and PSO-ANN have significant

goodness of fit in comparison with rest of the techniques.

Table 8 sums up which techniques are or are not better than human expert judgement in

predicting FST at unit, function, integration,and system test phases. The dark gray cells in

the Table 8 refer to techniques that are equally good in predicting FST with the human

expert judgement. The light gray cells indicate that the techniques are inferior with respect

to the human judgement and the dark gray cells. The white cells indicate that these

techniques are better than human expert judgement in predicting FST.

5 Discussion

One of the basic objectives of doing measurements is monitoring of activities so that action

can be taken as early as possible to control the final outcome. With this objective in focus,

FST metrics work toward the goal of minimization of avoidable rework by finding faults

where they are most cost-effective to find. Early prediction of FST at different test phases

is an important decision support to the development team whereby advance notification of

improvement potential can be made.

In this paper, we investigated two research questions outlined in Sect. 1. RQ.1 investigated

the use of a variety of techniques for predicting FST in unit, function, integration, and system

test phases. The results are evaluated for predictive accuracy (through absolute residuals) and

goodness of fit (through the Kolmogorov-Smirnov test). A range of techniques are found to be

useful in predicting FST for different test phases (both in terms of predictive accuracy and

goodness of fit). RQ.2 is concerning a more specific research question that compared human

expert judgement with other techniques. The results of this comparison indicate that expert

human judgement is better than majority of the techniques at unit and integration test but are

far off at function and system test. Hence, human predictions regarding FST lack some

consistency. There are indications that a smaller group of techniques might be consistently

better in predicting at all the test phases. Following is the list of techniques performing better

at various test phases for predicting FST in our study:

1. Unit test—AIRS and human.

2. Function test—SVM and PSO-ANN.

3. Integration test—Bagging, GP, AIRS, human.

4. System test—PR, GP, PSO-ANN.

A trend that can be observed from this list of comparatively better techniques is that

there is a representation of search-based techniques in predicting FST at each test phase.

– AIRS is consistently better at—Unit and integration test.

– PSO-ANN is consistently better at—function and system test

– GP is consistently better at—integration and system test.

Table 8 A summary of techniques that are or are not better than human experts predicting FST at unit,
function, integration, and system test phases
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The search-based techniques have certain merits, one or more of which might be

responsible for outperforming the other group of techniques:

– The search-based techniques are better able to cope with ill-defined, partial and messy

input data (Harman 2010). GP is able to perform well where the interrelationships

among the relevant variables are unknown or poorly understood (Poli et al. 2008).

According to Poli et al. (2008), ‘‘[GP] has proved successful where the application is

new or otherwise not well understood. It can help discover which variables and

operations are important; provide novel solutions to individual problems; unveil

unexpected relationships among variables; and sometimes GP can discover new

concepts that can then be applied in a wide variety of circumstances.’’ Evolutionary

algorithms have also been applied successfully to problems where there are high

correlations between variables, i.e., the choice of one variable may change the meaning

or quality of another (Blickle 1996).

– GP is particularly good at providing small programs that are nearly correct and

predictive models are not exceptionally long (Harman 2010). According to Poli et al.

(2008),‘‘[…]evolutionary algorithms tend to work best in domains where close

approximations are both possible and acceptable.’’ Search-based techniques can

produce very transparent solutions, in the sense that they can make explicit the weight

and contribution of each variable in the resulting solutions.

– Being nonparametric approaches, the structure of the end solution is not pre-conceived.

This is particularly important for the usability of search-based techniques, i.e., the

techniques used for prediction should be able to determine the form of relationship

between inputs and outputs rather than that the technique is dependent on the user

providing the form of the relationship.

– Search-based techniques are entirely data-driven approaches and do not include any

assumptions about the distribution of the data in its formulation. For example, GP

models are independent of any assumptions about the stochastic behavior of the

software failure process and the nature of software faults (Afzal 2009).

The results also argue that there is value in the use of other techniques like human

predictions, SVM, Bagging, and PR, and it is just that these are not as consistent as the

search-based techniques.

Another interesting outcome of this study is the performance of search-based techniques

(and other better performing techniques) outside their respective training ranges, i.e. , the

predictions are evaluated for 15 weeks of an ongoing project after being trained on another

baseline project data. This is to say that the over-fitting is within acceptable limits, and this

is particularly encouraging considering the fact that we are dealing with large projects

where the degree of variability in fault occurrences can be large. This issue is also related

to the amount of data available for training the different techniques which, in case of large

projects, is typically available.

Another important aspect of the results is that human predictions were among the better

techniques for predicting FST at unit and integration test. In our view, this is also an

important outcome and shows that expert opinions perhaps need more consideration that is

largely been ignored in empirical studies of software fault predictions (Tomaszewski et al.

2007; Catal and Diri 2009). We, therefore, agree with the conclusion of Hughes (1996) that

expert judgement should be supported by the use of other techniques rather than displacing

it. Search-based techniques seem to be an ideal decision support tool for two reasons:

1. They have performed consistently better than other techniques (Sect. 4.2).
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2. Search-based techniques, as part of the more general field of search-based software

engineering (SBSE) (Harman and Jones 2001; Harman 2007), are inherently

concerned with improving not with proving (Harman 2010).

As such, it is likely that human-guided semi-automated search might help get a reasonable

solution that incorporates human judgement in the search process. This human-guided search

is commonly referred to as ‘human-in-the-loop’ or ‘interactive evolution’ (Harman 2010) and

is a promising area of future research. The incorporation of human feedback in the automated

search can possibly account for some of the extreme fluctuations in the solely human pre-

dictions that are observed for predicting FST at unit and integration test.

We also believe that the selection of predictor variables that are easy to gather (e.g., the

project level metrics at the subject company in this study) and that do not conflict with the

development life cycle have better chances of industry acceptance. There is evidence to support

that general process level metrics are more accurate than code/structural metrics (Arisholm

et al. 2010). A recent study by Afzal (2010) has shown that the use of number of faults-slip-

through to/from various test phases is able to provide good results for finding fault-prone

modules at integration and system test phases. However, this subject requires further research.

We have also come to realize that the calculation of simple residuals and goodness of fit tests

along with statistical testing procedures are a sound way to secure empirical findings where the

outcome of interest is numeric rather than binary. An assessment of the qualitative features can

then be undertaken as an industrial survey to complement the initial empirical findings.

While working on-site at the subject organization for this research, we realized several

organizational factors that influence the success of such a decision support. Managerial support

and an established organizational culture of quantitative decision-making allowed us to gain

easy access to data repositories and relevant documentation. Moreover, collection of faults-slip-

through data and association of that data to modules were made possible using automated tool

support that greatly reduced the time for data collection and ensured data integrity.

6 Empirical validity evaluation

We adopted a case study approach in evaluating various techniques for predicting FST in

four test phases. A controlled experiment was deemed not practical since too many human

factors potentially affect fault occurrences.

What follows next is our presentation of the various threats to validity of our study:

Construct validity. Our choice of selecting project level metrics (Table 1) instead of

structural code metrics was influenced by multiple factors. First, metrics relevant to work

packages (Sect. 3.1) have an intuitive appeal for the employees at the subject company

where they can relate FST to the proportion of effort invested. Secondly, the existence of a

module in multiple work packages made it difficult to obtain consistent metrics at the

component level. Thirdly, the intent of this study is to use project level metrics that are

readily available and hence reduces the cost of doing such predictions. In addition, the case

study is performed in the same development organization having the identical application

domain, so the two projects in focus are characterized by the same set of metrics. Internal
validity. A potential threat to the internal validity is that the FST data did not consider the

severity level of faults, rather treated all faults equally. As for the prediction techniques,

the best we could do was to experiment with a variety of parameter values. But we

acknowledge that the obtained results could be improved by better optimizing the

parameters. External validity. The quantitative data modeling was performed on data from

Software Qual J

123



a specific company, while the questionnaire was filled out by an expert having 20 years of

work experience and currently holds the designation of systems verification process leader

at our subject organization. The questionnaire was filled to provide expert estimations of

FST metric and consisted of all relevant independent variables. The expert then used these

independent variables to provide estimated values. In order to reduce bias arising from the

design of the questionnaire, the researchers encouraged the expert for asking questions to

clarify any ambiguities. We have tried to present the context and the processes to the extent

possible for fellow researchers to generalize our results. We are also encouraged by the fact

that the companies are enterprise-size and have development centers worldwide that follow

similar practices. It is therefore likely that the results of this study are useful for them too.

A threat to the external validity is that we cannot publicize our industrial data sets due to

proprietary concerns. However, the transformed representation of the data can be made

available if requested. Conclusion validity. We were conscious in using the right statistical

test, basing our selection on whether the assumptions of the test were met or not. We used a

significance level of 0.05, which is a commonly used significance level for hypothesis

testing (Juristo and Moreno 2001), however, facing some criticism lately (Ioannidis 2005).

7 Conclusion

In this paper, we have presented an extensive empirical evaluation of various techniques

for predicting the number of faults slipping through to the four test phases of unit, function,

integration, and system.

We find that a range of techniques are found to be useful in such a prediction task, both in

terms of predictive accuracy and goodness of fit. However, the group of search-based tech-

niques [genetic programming (GP), gene expression programming (GEP), artificial immune

recognition system (AIRS), and particle swarm optimization–based artificial neural network

(PSO-ANN)] consistently give better predictions, having a representation at all of the test

phases. Human predictions are also among the better techniques at two of the four test phases.

We conclude that human predictions can be supported well by the use of search-based

techniques and a mix of the two approaches has the potential to provide improved results.

It is important to highlight that there might be additional evaluation criteria that are

important in addition to measuring the predictive accuracy and the goodness of fit. A

general multi-criteria based evaluation system is then required that captures both the

quantitative and the qualitative aspects of such a prediction task. Future work will also

investigate ways to incorporate human judgement in the automated search mechanism.

There are some lessons learnt at the end of this study which might be useful for

decision-making in real-world industrial projects:

– The number of faults slipping through to various test phases can be decreased if

improvement measures are taken in advance. To achieve this, prediction of FST is an

important decision-making tool.

– In large industrial projects, prediction of FST is possible using project level measure-

ments such as fault-inflow, status ranking of work packages, and test case progress.

– The organization wanting to improve their software testing process needs to

institutionalize a mechanism for recording data in a consistently correct manner.

– Tool support that uses the recorded data and applies a number of techniques to provide

results to the software engineer will improve usability of any prediction effort,

including FST prediction.
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– Tool support is also necessary to hide complex implementation details of techniques

and to ease parameter settings for end users.

– The software engineers need to be trained in the prediction task. Training workshops

need to be conducted which will not only increase awareness about the potential

benefits of FST prediction but will also help to discover potentially new independent

variables of interest.

Acknowledgment We are grateful to Prof. Anneliese Andrews, University of Denver, for reading and
commenting on the initial concept paper.

Appendix: Model training and testing procedure

This section discusses the parameter settings that have been considered for different

techniques during model selection. These settings may be used for a future replication of

this study and to quantify the impact of changing the parameter settings, perhaps using

different data sets. As given in Sect. 3.1, we use data from 45 weeks of the baseline project

to train the models, while the results are evaluated on the data from 15 weeks of an

ongoing project. The experimental evaluation process is also summarized in Procedure 1.

The least-square multiple regression does not require selection of parameters, rather the

coefficients are determined from the training data. Different estimators implemented in the

WEKA machine-learning tool (Hall et al. 2009) have been evaluated for pace regression

that includes empirical Bayes, ordinary least square, Akaike’s information criterion (AIC),

and risk inflation criterion (RIC). The estimator giving the least ARE is selected as the best

pace regression model.

The M5P technique requires setting the minimum number of instances at a leaf node

and has been varied in the range [2, 4, …, 10] with pruning and smoothing. The model with

minimum ARE is retained. The REPTree technique requires setting the maximum depth of

the tree, the minimum total weight of the instances in a leaf, the minimum variance

proportion at a node required for splitting, the number of folds of data used for pruning,

and the seed value used for randomizing the data. We have imposed no restriction on the
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maximum depth of the tree while the minimum total weight of the instances in a leaf is

varied in the range [2,4, …, 10]. The minimum variance proportion at a node, the number

of folds of data used for pruning, and the seed value used for randomization are kept

constant at their default values of 0.0010, 3, and 1, respectively.

The K* instance-based technique requires setting the blending parameter that has a

value between 0 and 100 %. This parameter has been varied in the range of [0, 20, 40, …,

100]. For k-NN, the number of neighbors has been varied in the range of [1, 3, 5, …, 15].

For SVM, two types of parameters have to be set by the user, i.e., values for the epsilon

parameter, e and the regularization parameter, C . Setting the value of C near the range of

the output values has been found to be a successful heuristic. We therefore vary C within

the range [1, 3, …, 11]. The value of e is varied in the range [0.001, 0.003] while the kernel

used is the radial basis function. Training an artificial neural network (ANN) requires

deciding on the number of layers and the number of nodes at each layer. We considered the

ANN architecture with 1 input layer, 2 hidden layers, and 1 output layer. The number of

independent variables in the problem determined the number of input nodes. The two

hidden layers used a varied number of nodes in the range [1, 3, 5, 7], while the output layer

used a single node. The hyperbolic tangent sigmoid and linear transfer functions have been

used for the hidden and output nodes, respectively. Finally, the number of epochs used is

500 and the weights are updated using a learning rate of 0.3 and a momentum of 0.2.

Model selection for Bagging involves deciding upon the size of the bag as a percentage

of the training set size and the number of iterations to be performed. These two parameters

have been varied in the range [25, 50, 75, 100] and [5, 10, 15], respectively. The REPTree

technique is used as the base learner. For rotation forest, the number of iterations have been

varied in the range [5, 10, 15] and the base learner used is the REPTree technique.

GP requires setting a number of control parameters. Although the affect of changing

these control parameters on the end solution is still an active area of research, we nev-

ertheless experimented with different function and terminal sets. Initially, we experimented

with a minimal set of functions and the terminal set containing the independent variable

only. We incrementally increased the function set with additional functions and later on

also complemented the terminal set with a random constant. The best model having the

best fitness was chosen from all the runs of the GP system with different variations of

function and terminal sets. The GP programs were evaluated according to the sum of

absolute differences between the obtained and expected results in all fitness cases,Pn
i¼1 jei � e0ij; where ei is the actual fault count data, e0i is the estimated value of the fault

count data and n is the size of the data set used to train the GP models. The control

parameters that were chosen for the GP system are shown in Table 9. For GEP, the

Table 9 GP control parameters

Control parameter Value

Population size 50

Termination condition 2,000 generations

Function set { ?, -, *, /, sin, cos, log, sqrt}

Tree initialization Ramped half-and-half method

Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1

Selection method Roulette-wheel
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solutions are evaluated for fitness using mean squared error and the control parameters are

shown in Table 10. The AIRS algorithm also requires setting a number of parameters.

While it is not possible to experiment with all the different combinations of these

parameters, however, the value of k for the majority voting has been varied in the range [1,

3, 5, …, 15]. Rest of the parameters used were as follows: affinity threshold = 0.2, clonal

rate = 10, hypermutation rate = 2, mutation rate = 0.1, stimulation value = 0.9, and total

resources = 150. For PSO-ANN, the architecture similar to the basic ANN is followed

except that the weights are now optimized using PSO with the number of particles in the

swarm set to 25 and the number of iterations varied in the range [500, 1,000, 15,000,

2,000]. The mean squared error is used as the fitness function.

References

Afzal, W. (2009). Search-based approaches to software fault prediction and software testing. Blekinge
Institute of Technology Licentiate Series No. 2009:06, Ronneby, Sweden.

Afzal, W. (2010). Using faults-slip-through metric as a predictor of fault-proneness: Proceedings of the 21st
Asia Pacific Software Engineering Conference (APSEC’10), IEEE.

Afzal, W., & Torkar, R. (2008). A comparative evaluation of using genetic programming for predicting fault
count data: Proceedings of the 3rd International Conference on Software Engineering Advances
(ICSEA’08), IEEE.

Afzal, W., Torkar, R., Feldt, R., & Wikstrand, G. (2010). Search-based prediction of fault-slip-through in
large software projects: Proceedings of the 2nd International Symposium on Search-Based Software
Engineering (SSBSE’10), IEEE Computer Society. pp. 79–88.

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6,
37–66.
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